Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
5
|
pubmed:dateCreated |
1985-11-26
|
pubmed:abstractText |
A new method is proposed to analyse dependencies in point processes, which takes into account specific character of neuronal activity. Simulation modelling of neuronal network revealed that the estimated weight of connection depends monotonically on the value of the model synaptic strength. In contrast to the crosscorrelation, the method allows for nonlinear interconnections and does not require point processes to be stationary and samples to be large. Examples are presented of the method's application to neurophysiological data analysis.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
0340-1200
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
52
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
301-6
|
pubmed:dateRevised |
2007-11-15
|
pubmed:meshHeading |
pubmed-meshheading:2996632-Animals,
pubmed-meshheading:2996632-Brain,
pubmed-meshheading:2996632-Hippocampus,
pubmed-meshheading:2996632-Humans,
pubmed-meshheading:2996632-Models, Neurological,
pubmed-meshheading:2996632-Neurons,
pubmed-meshheading:2996632-Statistics as Topic,
pubmed-meshheading:2996632-Synapses,
pubmed-meshheading:2996632-Synaptic Transmission
|
pubmed:year |
1985
|
pubmed:articleTitle |
A new statistical method for identifying interconnections between neuronal network elements.
|
pubmed:publicationType |
Journal Article
|