Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21768025rdf:typepubmed:Citationlld:pubmed
pubmed-article:21768025lifeskim:mentionsumls-concept:C0011923lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C0729936lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C0080194lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C0011209lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C0547070lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C1442080lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:21768025lifeskim:mentionsumls-concept:C1522207lld:lifeskim
pubmed-article:21768025pubmed:issue7lld:pubmed
pubmed-article:21768025pubmed:dateCreated2011-7-19lld:pubmed
pubmed-article:21768025pubmed:abstractTextA method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°C, there is no further increase in the sound speed and the temperature coefficient may become slightly negative. For ablation therapy, an irreversible injury to tissue and a complete heart block occurs in the range of 48 to 50°C for a short period in accordance with the well-known Arrhenius equation. Using these two properties, we propose a potential tool to detect the moment when tissue damage occurs by using the reduced slope in the thermal strain curve as a function of heating time. We have illustrated the feasibility of this method initially using porcine myocardium in vitro. The method was further demonstrated in vivo, using a specially equipped ablation tip and an 11-MHz microlinear intracardiac echocardiography (ICE) array mounted on the tip of a catheter. The thermal strain curves showed a plateau, strongly suggesting that the temperature reached at least 50°C.lld:pubmed
pubmed-article:21768025pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21768025pubmed:languageenglld:pubmed
pubmed-article:21768025pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21768025pubmed:citationSubsetIMlld:pubmed
pubmed-article:21768025pubmed:statusMEDLINElld:pubmed
pubmed-article:21768025pubmed:monthJullld:pubmed
pubmed-article:21768025pubmed:issn1525-8955lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:DedeKKlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:SahnDavid JDJlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:O'DonnellMatt...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:ChenPeterPlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:ShivkumarKaly...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:TruongUyenUlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:MahajanAmanAlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:OralkanOmerOlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:StephensDougl...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:NikoozadehAmi...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:ThoNguyenNlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:CannataJonath...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:ThomeniusKai...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:ParkSuhyunSlld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:DentingerAaro...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:WildesDouglas...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:SeoChi...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:JeongJong...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:de La...lld:pubmed
pubmed-article:21768025pubmed:authorpubmed-author:Khuri-YakubPi...lld:pubmed
pubmed-article:21768025pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21768025pubmed:volume58lld:pubmed
pubmed-article:21768025pubmed:ownerNLMlld:pubmed
pubmed-article:21768025pubmed:authorsCompleteYlld:pubmed
pubmed-article:21768025pubmed:pagination1406-17lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:meshHeadingpubmed-meshheading:21768025...lld:pubmed
pubmed-article:21768025pubmed:year2011lld:pubmed
pubmed-article:21768025pubmed:articleTitleThe feasibility of using thermal strain imaging to regulate energy delivery during intracardiac radio-frequency ablation.lld:pubmed
pubmed-article:21768025pubmed:affiliationUniversity of California, Davis, Department of Biomedical Engineering, Davis, CA, USA.lld:pubmed
pubmed-article:21768025pubmed:publicationTypeJournal Articlelld:pubmed