Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
6
pubmed:dateCreated
2011-5-18
pubmed:abstractText
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-10322208, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-10550208, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-11455595, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-11754341, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-12381853, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-12520063, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-12824337, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-12945051, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-14612579, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-14630660, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-14739325, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-15733917, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-15993894, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-16500677, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-16530285, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-17142228, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-17360625, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-17383172, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-17726102, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-17887792, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-18322526, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-18579566, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19073921, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19144906, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19240142, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19297350, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19496057, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19528080, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-19543381, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-20190761, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-20589633, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-20651028, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-2231712, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-2359125, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-2580101, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-8648635, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-9241415, http://linkedlifedata.com/resource/pubmed/commentcorrection/21521828-9480776
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
1469-9001
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1066-75
pubmed:meshHeading
pubmed:year
2011
pubmed:articleTitle
Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation.
pubmed:affiliation
INRIA AMIB Bioinformatique, Laboratoire d'Informatique (LIX), Ecole Polytechnique, 91128 Palaiseau, France. julie.bernauer@inria.fr
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural