Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
7341
pubmed:dateCreated
2011-4-8
pubmed:abstractText
Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
pubmed:grant
pubmed:commentsCorrections
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1476-4687
pubmed:author
pubmed:copyrightInfo
©2011 Macmillan Publishers Limited. All rights reserved
pubmed:issnType
Electronic
pubmed:day
7
pubmed:volume
472
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
57-63
pubmed:dateRevised
2011-10-12
pubmed:meshHeading
pubmed-meshheading:21475195-Animals, pubmed-meshheading:21475195-Atherosclerosis, pubmed-meshheading:21475195-Betaine, pubmed-meshheading:21475195-Biological Markers, pubmed-meshheading:21475195-Cardiovascular Diseases, pubmed-meshheading:21475195-Cholesterol, HDL, pubmed-meshheading:21475195-Choline, pubmed-meshheading:21475195-Diet, pubmed-meshheading:21475195-Dietary Fats, pubmed-meshheading:21475195-Female, pubmed-meshheading:21475195-Gastrointestinal Tract, pubmed-meshheading:21475195-Gene Expression Regulation, pubmed-meshheading:21475195-Germ-Free Life, pubmed-meshheading:21475195-Humans, pubmed-meshheading:21475195-Liver, pubmed-meshheading:21475195-Macrophages, pubmed-meshheading:21475195-Metabolomics, pubmed-meshheading:21475195-Methylamines, pubmed-meshheading:21475195-Mice, pubmed-meshheading:21475195-Mice, Inbred C57BL, pubmed-meshheading:21475195-Oxygenases, pubmed-meshheading:21475195-Phenotype, pubmed-meshheading:21475195-Phosphatidylcholines, pubmed-meshheading:21475195-Receptors, Scavenger, pubmed-meshheading:21475195-Risk Assessment
pubmed:year
2011
pubmed:articleTitle
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
pubmed:affiliation
Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural