rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
19
|
pubmed:dateCreated |
2011-3-25
|
pubmed:abstractText |
The thermal decomposition of ultrathin HfO(2) films (?0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800?°C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ? 0.6 nm, no discernible morphological changes are found below ? 700?°C. Then an abrupt reaction occurs at 750?°C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800?°C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
May
|
pubmed:issn |
1361-6528
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
13
|
pubmed:volume |
22
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
195705
|
pubmed:meshHeading |
pubmed-meshheading:21430314-Crystallization,
pubmed-meshheading:21430314-Hafnium,
pubmed-meshheading:21430314-Hot Temperature,
pubmed-meshheading:21430314-Humans,
pubmed-meshheading:21430314-Materials Testing,
pubmed-meshheading:21430314-Microscopy, Electron, Transmission,
pubmed-meshheading:21430314-Microscopy, Scanning Tunneling,
pubmed-meshheading:21430314-Nanostructures,
pubmed-meshheading:21430314-Oxides,
pubmed-meshheading:21430314-Silicates,
pubmed-meshheading:21430314-Silicon,
pubmed-meshheading:21430314-Silicon Dioxide,
pubmed-meshheading:21430314-Temperature,
pubmed-meshheading:21430314-Time Factors
|
pubmed:year |
2011
|
pubmed:articleTitle |
Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.
|
pubmed:affiliation |
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR. k.xue@unsw.edu.au
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|