Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2011-2-15
pubmed:abstractText
Molecular classification of tumors can be achieved by global gene expression profiling. Most machine learning classification algorithms furnish global error rates for the entire population. A few algorithms provide an estimate of probability of malignancy for each queried patient but the degree of accuracy of these estimates is unknown. On the other hand local minimax learning provides such probability estimates with best finite sample bounds on expected mean squared error on an individual basis for each queried patient. This allows a significant percentage of the patients to be identified as confidently predictable, a condition that ensures that the machine learning algorithm possesses an error rate below the tolerable level when applied to the confidently predictable patients.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-10521349, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-11742071, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-11823860, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-14722351, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-15130820, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-15591335, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-16105897, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-16273092, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-16761367, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-18385729, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-18385730, http://linkedlifedata.com/resource/pubmed/commentcorrection/21261972-20676074
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1755-8794
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
4
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
10
pubmed:dateRevised
2011-7-25
pubmed:meshHeading
pubmed:year
2011
pubmed:articleTitle
Confident predictability: identifying reliable gene expression patterns for individualized tumor classification using a local minimax kernel algorithm.
pubmed:affiliation
Department of Mathematical Sciences, University of Massachusetts, Lowell, MA, USA. Lee_Jones@UML.edu
pubmed:publicationType
Journal Article, Comparative Study, Research Support, N.I.H., Extramural