Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2011-1-11
pubmed:abstractText
SUMMARY: We present a tool for control-free copy number alteration (CNA) detection using deep-sequencing data, particularly useful for cancer studies. The tool deals with two frequent problems in the analysis of cancer deep-sequencing data: absence of control sample and possible polyploidy of cancer cells. FREEC (control-FREE Copy number caller) automatically normalizes and segments copy number profiles (CNPs) and calls CNAs. If ploidy is known, FREEC assigns absolute copy number to each predicted CNA. To normalize raw CNPs, the user can provide a control dataset if available; otherwise GC content is used. We demonstrate that for Illumina single-end, mate-pair or paired-end sequencing, GC-contentr normalization provides smooth profiles that can be further segmented and analyzed in order to predict CNAs. AVAILABILITY: Source code and sample data are available at http://bioinfo-out.curie.fr/projects/freec/.
pubmed:commentsCorrections
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jan
pubmed:issn
1367-4811
pubmed:author
pubmed:issnType
Electronic
pubmed:day
15
pubmed:volume
27
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
268-9
pubmed:dateRevised
2011-7-20
pubmed:meshHeading
pubmed:year
2011
pubmed:articleTitle
Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization.
pubmed:affiliation
Institut Curie, INSERM, U900, Paris, France. freec@curie.fr
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't