Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2011-3-24
pubmed:abstractText
As a downstream product of cyclooxygenase 2 (COX-2), prostaglandin E(2) (PGE(2)) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro-computed tomographic (µCT), and biomechanical measures. EP1(-/-) mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1(-/-) mice also had an earlier appearance of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1(-/-) mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE(2) receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/Acid Phosphatase, http://linkedlifedata.com/resource/pubmed/chemical/Alkaline Phosphatase, http://linkedlifedata.com/resource/pubmed/chemical/Col2a1 protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/Collagen Type I, http://linkedlifedata.com/resource/pubmed/chemical/Collagen Type II, http://linkedlifedata.com/resource/pubmed/chemical/Collagen Type X, http://linkedlifedata.com/resource/pubmed/chemical/Core Binding Factor Alpha 1 Subunit, http://linkedlifedata.com/resource/pubmed/chemical/Isoenzymes, http://linkedlifedata.com/resource/pubmed/chemical/Osteocalcin, http://linkedlifedata.com/resource/pubmed/chemical/Osteoprotegerin, http://linkedlifedata.com/resource/pubmed/chemical/Ptger1 protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/Ptger4 protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/RANK Ligand, http://linkedlifedata.com/resource/pubmed/chemical/Receptors, Prostaglandin E, EP1..., http://linkedlifedata.com/resource/pubmed/chemical/Receptors, Prostaglandin E, EP2..., http://linkedlifedata.com/resource/pubmed/chemical/Receptors, Prostaglandin E, EP4..., http://linkedlifedata.com/resource/pubmed/chemical/Runx2 protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/Tnfrsf11b protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factors, http://linkedlifedata.com/resource/pubmed/chemical/collagen type I, alpha 1 chain, http://linkedlifedata.com/resource/pubmed/chemical/osterix protein, mouse, http://linkedlifedata.com/resource/pubmed/chemical/tartrate-resistant acid phosphatase
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1523-4681
pubmed:author
pubmed:copyrightInfo
Copyright © 2011 American Society for Bone and Mineral Research.
pubmed:issnType
Electronic
pubmed:volume
26
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
792-802
pubmed:meshHeading
pubmed-meshheading:20939055-Acid Phosphatase, pubmed-meshheading:20939055-Alkaline Phosphatase, pubmed-meshheading:20939055-Animals, pubmed-meshheading:20939055-Bone Density, pubmed-meshheading:20939055-Bony Callus, pubmed-meshheading:20939055-Cartilage, pubmed-meshheading:20939055-Cell Differentiation, pubmed-meshheading:20939055-Cells, Cultured, pubmed-meshheading:20939055-Collagen Type I, pubmed-meshheading:20939055-Collagen Type II, pubmed-meshheading:20939055-Collagen Type X, pubmed-meshheading:20939055-Core Binding Factor Alpha 1 Subunit, pubmed-meshheading:20939055-Female, pubmed-meshheading:20939055-Femoral Fractures, pubmed-meshheading:20939055-Fracture Healing, pubmed-meshheading:20939055-Gene Expression, pubmed-meshheading:20939055-Isoenzymes, pubmed-meshheading:20939055-Male, pubmed-meshheading:20939055-Mesenchymal Stem Cells, pubmed-meshheading:20939055-Mice, pubmed-meshheading:20939055-Mice, Inbred C57BL, pubmed-meshheading:20939055-Mice, Knockout, pubmed-meshheading:20939055-Osteoblasts, pubmed-meshheading:20939055-Osteocalcin, pubmed-meshheading:20939055-Osteoclasts, pubmed-meshheading:20939055-Osteoprotegerin, pubmed-meshheading:20939055-RANK Ligand, pubmed-meshheading:20939055-Receptors, Prostaglandin E, EP1 Subtype, pubmed-meshheading:20939055-Receptors, Prostaglandin E, EP2 Subtype, pubmed-meshheading:20939055-Receptors, Prostaglandin E, EP4 Subtype, pubmed-meshheading:20939055-Time Factors, pubmed-meshheading:20939055-Torsion, Mechanical, pubmed-meshheading:20939055-Transcription Factors, pubmed-meshheading:20939055-X-Ray Microtomography
pubmed:year
2011
pubmed:articleTitle
EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair.
pubmed:affiliation
Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural