rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
36
|
pubmed:dateCreated |
2010-11-9
|
pubmed:abstractText |
Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P??-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel. It exists as unimers of random coil conformations in water above pH 7.5 but at low pH adopts an antiparallel ?-sheet conformation. It also self-assembles under physiological conditions in a concentration-dependent manner. Here we describe an unimer P??-4 production system and the use of a simple site-directed mutagenesis approach to generate a series of other P??-family peptide expression vectors. We have developed an efficient purification strategy for these peptide biomaterials using a simple procedure involving chemical cleavage with cyanogen bromide then repeated filtration, lyophilisation and wash steps. We report peptide-fusion protein yields of ca. 4.64 g/L and we believe the highest reported recovery of a recombinant self-assembling peptide at 203 mg/L of pure recombinant P??-4. This peptide forms a self-supporting hydrogel under physiological conditions with essentially identical physico-chemical properties to the chemically synthesised peptide. Critically it also displays excellent cytocompatibility when tested with primary human dermal fibroblasts. This study demonstrates that high levels of a series of recombinant self-assembling peptides can be purified using a simple process for applications as scaffolds in tissue engineering.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-11592996,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12699700,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12904028,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12930093,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15835929,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15915565,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15939307,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-16249097,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-17662383,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-17696394,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18183291,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18436322,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18712921,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18929804,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19064286,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19214714,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19266471,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19497631,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19530081,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19543314,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-20097239,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-8563639,
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-9069283
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Dec
|
pubmed:issn |
1878-5905
|
pubmed:author |
|
pubmed:copyrightInfo |
Copyright © 2010 Elsevier Ltd. All rights reserved.
|
pubmed:issnType |
Electronic
|
pubmed:volume |
31
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
9395-405
|
pubmed:dateRevised |
2011-8-1
|
pubmed:meshHeading |
pubmed-meshheading:20932572-Amino Acid Sequence,
pubmed-meshheading:20932572-Biocompatible Materials,
pubmed-meshheading:20932572-Cell Death,
pubmed-meshheading:20932572-Cloning, Molecular,
pubmed-meshheading:20932572-Cyanogen Bromide,
pubmed-meshheading:20932572-Cytoplasm,
pubmed-meshheading:20932572-Electrophoresis, Polyacrylamide Gel,
pubmed-meshheading:20932572-Escherichia coli,
pubmed-meshheading:20932572-Humans,
pubmed-meshheading:20932572-Hydrogels,
pubmed-meshheading:20932572-Inclusion Bodies,
pubmed-meshheading:20932572-Mass Spectrometry,
pubmed-meshheading:20932572-Molecular Sequence Data,
pubmed-meshheading:20932572-Peptides,
pubmed-meshheading:20932572-Protein Structure, Secondary,
pubmed-meshheading:20932572-Recombinant Fusion Proteins,
pubmed-meshheading:20932572-Solubility,
pubmed-meshheading:20932572-Tissue Engineering
|
pubmed:year |
2010
|
pubmed:articleTitle |
Recombinant self-assembling peptides as biomaterials for tissue engineering.
|
pubmed:affiliation |
Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|