Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
36
pubmed:dateCreated
2010-11-9
pubmed:abstractText
Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P??-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel. It exists as unimers of random coil conformations in water above pH 7.5 but at low pH adopts an antiparallel ?-sheet conformation. It also self-assembles under physiological conditions in a concentration-dependent manner. Here we describe an unimer P??-4 production system and the use of a simple site-directed mutagenesis approach to generate a series of other P??-family peptide expression vectors. We have developed an efficient purification strategy for these peptide biomaterials using a simple procedure involving chemical cleavage with cyanogen bromide then repeated filtration, lyophilisation and wash steps. We report peptide-fusion protein yields of ca. 4.64 g/L and we believe the highest reported recovery of a recombinant self-assembling peptide at 203 mg/L of pure recombinant P??-4. This peptide forms a self-supporting hydrogel under physiological conditions with essentially identical physico-chemical properties to the chemically synthesised peptide. Critically it also displays excellent cytocompatibility when tested with primary human dermal fibroblasts. This study demonstrates that high levels of a series of recombinant self-assembling peptides can be purified using a simple process for applications as scaffolds in tissue engineering.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-11592996, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12699700, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12904028, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-12930093, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15835929, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15915565, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-15939307, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-16249097, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-17662383, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-17696394, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18183291, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18436322, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18712921, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-18929804, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19064286, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19214714, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19266471, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19497631, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19530081, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-19543314, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-20097239, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-8563639, http://linkedlifedata.com/resource/pubmed/commentcorrection/20932572-9069283
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1878-5905
pubmed:author
pubmed:copyrightInfo
Copyright © 2010 Elsevier Ltd. All rights reserved.
pubmed:issnType
Electronic
pubmed:volume
31
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
9395-405
pubmed:dateRevised
2011-8-1
pubmed:meshHeading
pubmed-meshheading:20932572-Amino Acid Sequence, pubmed-meshheading:20932572-Biocompatible Materials, pubmed-meshheading:20932572-Cell Death, pubmed-meshheading:20932572-Cloning, Molecular, pubmed-meshheading:20932572-Cyanogen Bromide, pubmed-meshheading:20932572-Cytoplasm, pubmed-meshheading:20932572-Electrophoresis, Polyacrylamide Gel, pubmed-meshheading:20932572-Escherichia coli, pubmed-meshheading:20932572-Humans, pubmed-meshheading:20932572-Hydrogels, pubmed-meshheading:20932572-Inclusion Bodies, pubmed-meshheading:20932572-Mass Spectrometry, pubmed-meshheading:20932572-Molecular Sequence Data, pubmed-meshheading:20932572-Peptides, pubmed-meshheading:20932572-Protein Structure, Secondary, pubmed-meshheading:20932572-Recombinant Fusion Proteins, pubmed-meshheading:20932572-Solubility, pubmed-meshheading:20932572-Tissue Engineering
pubmed:year
2010
pubmed:articleTitle
Recombinant self-assembling peptides as biomaterials for tissue engineering.
pubmed:affiliation
Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't