Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2010-10-5
pubmed:abstractText
Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity.
pubmed:grant
pubmed:commentsCorrections
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
1097-4199
pubmed:author
pubmed:copyrightInfo
Copyright © 2010 Elsevier Inc. All rights reserved.
pubmed:issnType
Electronic
pubmed:day
6
pubmed:volume
68
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
99-112
pubmed:dateRevised
2011-10-18
pubmed:meshHeading
pubmed-meshheading:20920794-4-Aminopyridine, pubmed-meshheading:20920794-Acetoacetates, pubmed-meshheading:20920794-Animals, pubmed-meshheading:20920794-Astrocytes, pubmed-meshheading:20920794-Behavior, Animal, pubmed-meshheading:20920794-Cells, Cultured, pubmed-meshheading:20920794-Chlorides, pubmed-meshheading:20920794-Chromatography, High Pressure Liquid, pubmed-meshheading:20920794-Disease Models, Animal, pubmed-meshheading:20920794-Dopamine, pubmed-meshheading:20920794-Dose-Response Relationship, Drug, pubmed-meshheading:20920794-Embryo, Mammalian, pubmed-meshheading:20920794-Excitatory Postsynaptic Potentials, pubmed-meshheading:20920794-Exocytosis, pubmed-meshheading:20920794-Gene Expression Regulation, pubmed-meshheading:20920794-Glutamic Acid, pubmed-meshheading:20920794-Hippocampus, pubmed-meshheading:20920794-Humans, pubmed-meshheading:20920794-Ketone Bodies, pubmed-meshheading:20920794-Membrane Potential, Mitochondrial, pubmed-meshheading:20920794-Mice, pubmed-meshheading:20920794-Mice, Inbred C57BL, pubmed-meshheading:20920794-Microdialysis, pubmed-meshheading:20920794-Models, Biological, pubmed-meshheading:20920794-Neurons, pubmed-meshheading:20920794-Patch-Clamp Techniques, pubmed-meshheading:20920794-Potassium Channel Blockers, pubmed-meshheading:20920794-Rats, pubmed-meshheading:20920794-Seizures, pubmed-meshheading:20920794-Synaptic Vesicles, pubmed-meshheading:20920794-Vesicular Glutamate Transport Protein 2
pubmed:year
2010
pubmed:articleTitle
Metabolic control of vesicular glutamate transport and release.
pubmed:affiliation
Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
pubmed:publicationType
Journal Article, In Vitro, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural