Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
7
pubmed:dateCreated
2010-11-8
pubmed:abstractText
Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
1527-1323
pubmed:author
pubmed:copyrightInfo
©RSNA, 2010
pubmed:issnType
Electronic
pubmed:volume
30
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
2039-48
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.
pubmed:affiliation
Department of Radiology, Stanford University Hospitals and Clinics, 300 Pasteur Dr, Room H1307, Stanford, CA 94305, USA. baodo@stanford.edu
pubmed:publicationType
Journal Article