Source:http://linkedlifedata.com/resource/pubmed/id/20591905
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
17
|
pubmed:dateCreated |
2010-8-18
|
pubmed:abstractText |
One of the main goals of high-throughput gene-expression studies in cancer research is to identify prognostic gene signatures, which have the potential to predict the clinical outcome. It is common practice to investigate these questions using classification methods. However, standard methods merely rely on gene-expression data and assume the genes to be independent. Including pathway knowledge a priori into the classification process has recently been indicated as a promising way to increase classification accuracy as well as the interpretability and reproducibility of prognostic gene signatures.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical | |
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
1367-4811
|
pubmed:author | |
pubmed:issnType |
Electronic
|
pubmed:day |
1
|
pubmed:volume |
26
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
2136-44
|
pubmed:meshHeading |
pubmed-meshheading:20591905-Algorithms,
pubmed-meshheading:20591905-Artificial Intelligence,
pubmed-meshheading:20591905-Breast Neoplasms,
pubmed-meshheading:20591905-Female,
pubmed-meshheading:20591905-Gene Expression Profiling,
pubmed-meshheading:20591905-Gene Expression Regulation, Neoplastic,
pubmed-meshheading:20591905-Humans,
pubmed-meshheading:20591905-Prognosis,
pubmed-meshheading:20591905-ROC Curve,
pubmed-meshheading:20591905-Receptor, erbB-2,
pubmed-meshheading:20591905-Risk Factors
|
pubmed:year |
2010
|
pubmed:articleTitle |
Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients.
|
pubmed:affiliation |
German Cancer Research Center, Cancer Genome Research, Im Neuenheimer Feld 280, 69120 Heidelberg. m.johannes@DKFZ-heidelberg.de
|
pubmed:publicationType |
Journal Article,
Comparative Study,
Research Support, Non-U.S. Gov't
|