Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
13
pubmed:dateCreated
2010-6-18
pubmed:abstractText
Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics techniques, such as in the elucidation of secondary structure information, identification of post-translational modifications, as well as higher identification rates with reduced experiment times. The high throughput nature of this technique benefits from accurate calculation of cross sections, mobilities and associated drift times of peptides, thereby enhancing downstream data analysis. Here, we present a model that uses physicochemical properties of peptides to accurately predict a peptide's drift time directly from its amino acid sequence. This model is used in conjunction with two mathematical techniques, a partial least squares regression and a support vector regression setting.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-10536822, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-11331240, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-11506220, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-12641221, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-14690712, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-15215403, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-15253624, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-15517975, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-16481334, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-16841926, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-17073405, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-17512752, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-17545177, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-17545182, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-18163182, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-18342336, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-18453551, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-19292916, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-19537160, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-19735588, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-20000344, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-3418713, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-5700434, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-6191210, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-6582470, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-9698570, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-9794086, http://linkedlifedata.com/resource/pubmed/commentcorrection/20495001-9949724
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1367-4811
pubmed:author
pubmed:issnType
Electronic
pubmed:day
1
pubmed:volume
26
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1601-7
pubmed:dateRevised
2011-8-1
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Machine learning based prediction for peptide drift times in ion mobility spectrometry.
pubmed:affiliation
Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 999 Battelle Boulevard, Richland, WA 99352, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural