Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2010-6-18
pubmed:abstractText
Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-11911796, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-15961482, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-16381895, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-16723010, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-16945945, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-17214507, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-17344232, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-17542777, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-17925349, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-17942444, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-18689844, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-19150482, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-19183003, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-20030818, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-20338053, http://linkedlifedata.com/resource/pubmed/commentcorrection/20444264-9697168
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1471-2105
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
11
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
228
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Learning gene regulatory networks from only positive and unlabeled data.
pubmed:affiliation
Department of Biological and Environmental Studies, University of Sannio, Benevento, Italy. lcerulo@unisannio.it
pubmed:publicationType
Journal Article, Comparative Study, Research Support, Non-U.S. Gov't