Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20309758rdf:typepubmed:Citationlld:pubmed
pubmed-article:20309758lifeskim:mentionsumls-concept:C0017262lld:lifeskim
pubmed-article:20309758lifeskim:mentionsumls-concept:C1704711lld:lifeskim
pubmed-article:20309758lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:20309758pubmed:issue2lld:pubmed
pubmed-article:20309758pubmed:dateCreated2010-3-23lld:pubmed
pubmed-article:20309758pubmed:abstractTextGene expression microarrays are powerful tools for global comparison and estimation of gene expression. Many microarray studies have demonstrated biologically plausible results with only a few arrays, leading to a misperception that a handful of hybridized arrays can always find something meaningful. From a statistical point of view, it is important to prospectively estimate required sample sizes prior to undertaking a microarray experiment. However, all sample size calculations need to directly or indirectly estimate the unknown distribution of the effect sizes of gene expression intensities. A parametric mixture model has been developed for relating the sample size directly to the false discovery rate (FDR), the most popular multiple-comparison control criteria. In this paper, we extend the parametric mixture model and propose a robust semiparametric Dirichlet process mixture model, where the parametric distribution of gene expressions is no longer specified. This analysis is performed in a Bayesian inference framework using Markov-chain Monte Carlo steps. The usefulness of the method is illustrated by simulations and a real murine lung study.lld:pubmed
pubmed-article:20309758pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:languageenglld:pubmed
pubmed-article:20309758pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20309758pubmed:citationSubsetIMlld:pubmed
pubmed-article:20309758pubmed:statusMEDLINElld:pubmed
pubmed-article:20309758pubmed:monthMarlld:pubmed
pubmed-article:20309758pubmed:issn1520-5711lld:pubmed
pubmed-article:20309758pubmed:authorpubmed-author:IbrahimJoseph...lld:pubmed
pubmed-article:20309758pubmed:authorpubmed-author:ZouFeiFlld:pubmed
pubmed-article:20309758pubmed:authorpubmed-author:HuangHanwenHlld:pubmed
pubmed-article:20309758pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20309758pubmed:volume20lld:pubmed
pubmed-article:20309758pubmed:ownerNLMlld:pubmed
pubmed-article:20309758pubmed:authorsCompleteYlld:pubmed
pubmed-article:20309758pubmed:pagination267-80lld:pubmed
pubmed-article:20309758pubmed:dateRevised2011-10-28lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:meshHeadingpubmed-meshheading:20309758...lld:pubmed
pubmed-article:20309758pubmed:year2010lld:pubmed
pubmed-article:20309758pubmed:articleTitleA semiparametric Bayesian approach for estimating the gene expression distribution.lld:pubmed
pubmed-article:20309758pubmed:affiliationDepartment of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. fzou@bios.unc.edulld:pubmed
pubmed-article:20309758pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20309758pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed