rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
2
|
pubmed:dateCreated |
2010-3-23
|
pubmed:abstractText |
Gene expression microarrays are powerful tools for global comparison and estimation of gene expression. Many microarray studies have demonstrated biologically plausible results with only a few arrays, leading to a misperception that a handful of hybridized arrays can always find something meaningful. From a statistical point of view, it is important to prospectively estimate required sample sizes prior to undertaking a microarray experiment. However, all sample size calculations need to directly or indirectly estimate the unknown distribution of the effect sizes of gene expression intensities. A parametric mixture model has been developed for relating the sample size directly to the false discovery rate (FDR), the most popular multiple-comparison control criteria. In this paper, we extend the parametric mixture model and propose a robust semiparametric Dirichlet process mixture model, where the parametric distribution of gene expressions is no longer specified. This analysis is performed in a Bayesian inference framework using Markov-chain Monte Carlo steps. The usefulness of the method is illustrated by simulations and a real murine lung study.
|
pubmed:grant |
|
pubmed:commentsCorrections |
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Mar
|
pubmed:issn |
1520-5711
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:volume |
20
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
267-80
|
pubmed:dateRevised |
2011-10-28
|
pubmed:meshHeading |
pubmed-meshheading:20309758-Animals,
pubmed-meshheading:20309758-Bayes Theorem,
pubmed-meshheading:20309758-Computer Simulation,
pubmed-meshheading:20309758-Data Interpretation, Statistical,
pubmed-meshheading:20309758-Disease Models, Animal,
pubmed-meshheading:20309758-Gene Expression Profiling,
pubmed-meshheading:20309758-Gene Expression Regulation,
pubmed-meshheading:20309758-Genetic Predisposition to Disease,
pubmed-meshheading:20309758-Markov Chains,
pubmed-meshheading:20309758-Mice,
pubmed-meshheading:20309758-Mice, Inbred BALB C,
pubmed-meshheading:20309758-Mice, Inbred C57BL,
pubmed-meshheading:20309758-Models, Statistical,
pubmed-meshheading:20309758-Monte Carlo Method,
pubmed-meshheading:20309758-Oligonucleotide Array Sequence Analysis,
pubmed-meshheading:20309758-Pulmonary Fibrosis,
pubmed-meshheading:20309758-Reproducibility of Results,
pubmed-meshheading:20309758-Sample Size,
pubmed-meshheading:20309758-Species Specificity
|
pubmed:year |
2010
|
pubmed:articleTitle |
A semiparametric Bayesian approach for estimating the gene expression distribution.
|
pubmed:affiliation |
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. fzou@bios.unc.edu
|
pubmed:publicationType |
Journal Article,
Research Support, N.I.H., Extramural
|