Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
2010-5-5
pubmed:abstractText
Carbon 13 nuclear magnetic resonance (NMR) isotopomer analysis was used to measure the rates of oxidation of long-chain fatty acids, ketones, and pyruvate to determine the minimum pyruvate concentration ([pyruvate]) needed to suppress oxidation of these alternative substrates. Substrate mixtures were chosen to represent either the fed or fasted state. At physiological [pyruvate], fatty acids and ketones supplied the overwhelming majority of acetyl-CoA. Under conditions mimicking the fed state, 3 mM pyruvate provided approximately 80% of acetyl-CoA, but under fasting conditions 6 mM pyruvate contributed only 33% of acetyl-CoA. Higher [pyruvate], 10-25 mM, was associated with transient reduced cardiac output, but overall hemodynamic performance was unchanged after equilibration. These observations suggested that 3-6 mM pyruvate in the coronary arteries would be an appropriate target for studies with hyperpolarized [1-(13)C]pyruvate. However, the metabolic products of 3 mM hyperpolarized [1-(13)C]pyruvate could not be detected in the isolated heart during perfusion with a physiological mixture of substrates including 3% albumin. In the presence of albumin even at high concentrations of pyruvate, 20 mM, hyperpolarized H(13)CO(3)(-) could be detected only in the absence of competing substrates. Highly purified albumin (but not albumin from plasma) substantially reduced the longitudinal relaxation time of [1-(13)C]pyruvate. In conclusion, studies of cardiac metabolism using hyperpolarized [1-(13)C]pyruvate are sensitive to the effects of competing substrates on pyruvate oxidation.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-10218531, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-10654616, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-11045976, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-11454591, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-11557551, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-11790700, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-12040552, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-13148192, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-1350466, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-13743889, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-13796251, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-14253143, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-14481944, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-14551043, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-14984729, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-15163812, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-167775, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-16837573, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-16843845, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-18056642, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-180974, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-18509335, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-18689683, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-18956454, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-19253408, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-1975750, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-2528640, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-2707262, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-2879743, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-3284880, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-4087305, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-4462746, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-6024444, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-6477383, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-6493499, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-701258, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-7363295, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-7769814, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-8181295, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-8585860, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-9334176, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-9334177, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-9758733, http://linkedlifedata.com/resource/pubmed/commentcorrection/20207817-9878726
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
May
pubmed:issn
1522-1539
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
298
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
H1556-64
pubmed:dateRevised
2011-9-27
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate.
More...