Source:http://linkedlifedata.com/resource/pubmed/id/20027381
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
1
|
pubmed:dateCreated |
2010-1-11
|
pubmed:abstractText |
Bayesian anomaly detection computes posterior probabilities of anomalous events by combining prior beliefs and evidence from data. However, the specification of prior probabilities can be challenging. This paper describes a Bayesian prior in the context of disease outbreak detection. The goal is to provide a meaningful, easy-to-use prior that yields a posterior probability of an outbreak that performs at least as well as a standard frequentist approach. If this goal is achieved, the resulting posterior could be usefully incorporated into a decision analysis about how to act in light of a possible disease outbreak.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
0026-1270
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
49
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
44-53
|
pubmed:meshHeading |
pubmed-meshheading:20027381-Algorithms,
pubmed-meshheading:20027381-Anthrax,
pubmed-meshheading:20027381-Bayes Theorem,
pubmed-meshheading:20027381-Biosurveillance,
pubmed-meshheading:20027381-Disease Outbreaks,
pubmed-meshheading:20027381-Emergency Service, Hospital,
pubmed-meshheading:20027381-False Positive Reactions,
pubmed-meshheading:20027381-Humans,
pubmed-meshheading:20027381-Normal Distribution,
pubmed-meshheading:20027381-Numerical Analysis, Computer-Assisted,
pubmed-meshheading:20027381-Probability Theory,
pubmed-meshheading:20027381-Reproducibility of Results
|
pubmed:year |
2010
|
pubmed:articleTitle |
A new prior for bayesian anomaly detection: application to biosurveillance.
|
pubmed:affiliation |
Lister Hill National Center for Biomedical Communications, Building 38A, 9N912A, National Institute of Health, Bethesda, Maryland 20894, USA. yanna.shen@nih.gov
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, Non-P.H.S.
|