Source:http://linkedlifedata.com/resource/pubmed/id/19963901
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:dateCreated |
2009-12-7
|
pubmed:abstractText |
This work examines support vector machine (SVM) classification of complex fMRI data, both in the image domain and in the acquired k-space data. We achieve high classification accuracy using the magnitude data in both domains. Additionally, we maintain high classification accuracy even when using only partial k-space data. Thus we demonstrate the feasibility of using kspace data for classification, enabling rapid realtime acquisition and classification.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
1557-170X
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
2009
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
5381-4
|
pubmed:meshHeading | |
pubmed:year |
2009
|
pubmed:articleTitle |
Support vector machine classification of complex fMRI data.
|
pubmed:affiliation |
Functional MRI Laboratory, University of Michigan, Ann Arbor, MI 48109, USA. spelt@umich.edu
|
pubmed:publicationType |
Journal Article,
Research Support, N.I.H., Extramural
|