Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2009-10-8
pubmed:abstractText
Over the past years, microarray databases have increased rapidly in size. While they offer a wealth of data, it remains challenging to integrate data arising from different studies. Here we propose an unsupervised approach of a large-scale meta-analysis on Arabidopsis thaliana whole genome expression datasets to gain additional insights into the function and regulation of genes. Applying kernel principal component analysis and hierarchical clustering, we found three major groups of experimental contrasts sharing a common biological trait. Genes associated to two of these clusters are known to play an important role in indole-3-acetic acid (IAA) mediated plant growth and development or pathogen defense. Novel functions could be assigned to genes including a cluster of serine/threonine kinases that carry two uncharacterized domains (DUF26) in their receptor part implicated in host defense. With the approach shown here, hidden interrelations between genes regulated under different conditions can be unraveled.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-10077610, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-11135117, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-11459065, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-11459067, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-12068110, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-14550631, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-14681484, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-15033871, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-15921507, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-15980261, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16009995, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16381859, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16553894, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16595560, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16606446, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-16677390, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-17005538, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-17099226, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-17132828, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-17280695, http://linkedlifedata.com/resource/pubmed/commentcorrection/19812781-8022831
pubmed:language
eng
pubmed:journal
pubmed:status
PubMed-not-MEDLINE
pubmed:issn
1177-9322
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
2
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
265-80
pubmed:dateRevised
2010-9-28
pubmed:year
2008
pubmed:articleTitle
Unsupervised meta-analysis on diverse gene expression datasets allows insight into gene function and regulation.
pubmed:affiliation
Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
pubmed:publicationType
Journal Article