Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2009-11-17
pubmed:abstractText
In this study, we describe the use of intravital microscopy in a transgenic mouse model expressing yellow fluorescent protein (YFP) under the control of a monocyte specific promoter c-fms (CD115) to track and quantify specific leukocyte subsets. Flow cytometry on peripheral and bone marrow leukocytes revealed that YFP was predominantly expressed by CD11a(+), CD11b(+), and CD14(+) monocytes. In the bone marrow, 67+/-4% of Ly6C(high) F4/80(+) cells were YFP(high) while 55+/-1% of Ly6C(low) F4/80(+) cells were YFP(low) supporting the use of c-fms(YFP) expression as a marker of monocyte lineage. 70+/-7% of CD11b(+) F4/80(+) Ly6C(+) ("triple positive") cells expressed YFP. To assess leukocyte-endothelial interactions in YFP(+) cells in c-fms(YFP+) mice, we evaluated leukocyte adhesion, rolling and local shear stress responses in the cremasteric endothelium 4 h following administration of TNFalpha. TNFalpha resulted in a five-fold increase in adhesion of YFP(+) cells to the endothelium and provided superior discriminative ability in assessing rolling and adhesion events when compared with bright field microscopy. Additionally, when compared with Rhodamine-6G labeled leukocytes or GFP(+) cells in mice transplanted with green fluorescent protein (GFP) positive bone marrow, the level of detail observed in the c-fms(YFP+) was greater, with both GFP(+) and YFP(+) cells demonstrating superior signal to noise compared to bright field microscopy. A weak positive linear correlation between wall shear stress and YFP(+) cell adhesion (r(2)=0.20, p<0.05) was seen in the cremasteric microcirculation. Taken together, these data demonstrate the use of c-fms(YFP+) mice in identifying distinct monocyte subsets and highlight the potential of this model for real-time monocyte-endothelial interactions using intravital microscopy.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-10539839, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-10821952, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-11943660, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-12388188, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-12393599, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-12871640, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-14670689, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-15034056, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-15034057, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-15280097, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-16920499, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17200718, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17200719, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17364026, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17549259, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17672885, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-17673663, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-18202748, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-18392044, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-19273628, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-7684574, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-8182345, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-8655257, http://linkedlifedata.com/resource/pubmed/commentcorrection/19682464-9874562
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1095-9319
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
78
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
294-300
pubmed:dateRevised
2011-9-26
pubmed:meshHeading
pubmed-meshheading:19682464-Animals, pubmed-meshheading:19682464-Biological Markers, pubmed-meshheading:19682464-Bone Marrow Cells, pubmed-meshheading:19682464-Bone Marrow Transplantation, pubmed-meshheading:19682464-Cell Adhesion, pubmed-meshheading:19682464-Cell Communication, pubmed-meshheading:19682464-Cell Lineage, pubmed-meshheading:19682464-Endothelial Cells, pubmed-meshheading:19682464-Endothelium, Vascular, pubmed-meshheading:19682464-Flow Cytometry, pubmed-meshheading:19682464-Hematopoiesis, pubmed-meshheading:19682464-Leukocyte Rolling, pubmed-meshheading:19682464-Luminescent Proteins, pubmed-meshheading:19682464-Lymphocyte Subsets, pubmed-meshheading:19682464-Male, pubmed-meshheading:19682464-Mice, pubmed-meshheading:19682464-Mice, Inbred C57BL, pubmed-meshheading:19682464-Mice, Transgenic, pubmed-meshheading:19682464-Microcirculation, pubmed-meshheading:19682464-Microscopy, Video, pubmed-meshheading:19682464-Models, Animal, pubmed-meshheading:19682464-Muscle, Skeletal
pubmed:year
2009
pubmed:articleTitle
A mouse model of yellow fluorescent protein (YFP) expression in hematopoietic cells to assess leukocyte-endothelial interactions in the microcirculation.
pubmed:affiliation
Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 473 W. 12th Avenue, Room 110, Columbus, OH 43210, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural