rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
2
|
pubmed:dateCreated |
2009-7-21
|
pubmed:abstractText |
A fundamental understanding of molecular self-assembly processes is important for improving the design and construction of higher-order supramolecular structures. DNA tile based self-assembly has recently been used to generate periodic and aperiodic nanostructures of different geometries, but there have been very few studies that focus on the thermodynamic properties of the inter-tile interactions. Here we demonstrate that fluorescently-labeled multihelical DNA tiles can be used as a model platform to systematically investigate multivalent DNA hybridization. Real-time monitoring of DNA tile assembly using fluorescence resonance energy transfer revealed that both the number and the relative position of DNA sticky-ends play a significant role in the stability of the final assembly. As multivalent interactions are important factors in nature's delicate macromolecular systems, our quantitative analysis of the stability and cooperativity of a network of DNA sticky-end associations could lead to greater control over hierarchical nanostructure formation and algorithmic self-assembly.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-12540916,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-14512621,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-14961116,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-15315420,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16267576,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16339440,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16464044,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16541064,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16569019,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16605527,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16832805,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16834438,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17002357,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17881584,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17939666,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-18337818,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-2017259,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-6188926,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-9707114,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-9838871
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jul
|
pubmed:issn |
1542-0086
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
22
|
pubmed:volume |
97
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
563-71
|
pubmed:dateRevised |
2010-9-27
|
pubmed:meshHeading |
|
pubmed:year |
2009
|
pubmed:articleTitle |
Studies of thermal stability of multivalent DNA hybridization in a nanostructured system.
|
pubmed:affiliation |
Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, Non-P.H.S.,
Research Support, Non-U.S. Gov't,
Research Support, N.I.H., Extramural
|