Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2009-7-21
pubmed:abstractText
A fundamental understanding of molecular self-assembly processes is important for improving the design and construction of higher-order supramolecular structures. DNA tile based self-assembly has recently been used to generate periodic and aperiodic nanostructures of different geometries, but there have been very few studies that focus on the thermodynamic properties of the inter-tile interactions. Here we demonstrate that fluorescently-labeled multihelical DNA tiles can be used as a model platform to systematically investigate multivalent DNA hybridization. Real-time monitoring of DNA tile assembly using fluorescence resonance energy transfer revealed that both the number and the relative position of DNA sticky-ends play a significant role in the stability of the final assembly. As multivalent interactions are important factors in nature's delicate macromolecular systems, our quantitative analysis of the stability and cooperativity of a network of DNA sticky-end associations could lead to greater control over hierarchical nanostructure formation and algorithmic self-assembly.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-12540916, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-14512621, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-14961116, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-15315420, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16267576, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16339440, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16464044, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16541064, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16569019, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16605527, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16832805, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-16834438, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17002357, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17881584, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-17939666, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-18337818, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-2017259, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-6188926, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-9707114, http://linkedlifedata.com/resource/pubmed/commentcorrection/19619471-9838871
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1542-0086
pubmed:author
pubmed:issnType
Electronic
pubmed:day
22
pubmed:volume
97
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
563-71
pubmed:dateRevised
2010-9-27
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Studies of thermal stability of multivalent DNA hybridization in a nanostructured system.
pubmed:affiliation
Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural