rdf:type |
|
lifeskim:mentions |
umls-concept:C0002045,
umls-concept:C0017428,
umls-concept:C0023185,
umls-concept:C0026336,
umls-concept:C0026339,
umls-concept:C0033204,
umls-concept:C0376522,
umls-concept:C0683481,
umls-concept:C0806909,
umls-concept:C1552603,
umls-concept:C1704675,
umls-concept:C1706202,
umls-concept:C1720335,
umls-concept:C1948048,
umls-concept:C2700640
|
pubmed:issue |
19
|
pubmed:dateCreated |
2009-9-28
|
pubmed:abstractText |
In both genome-wide association studies (GWAS) and pathway analysis, the modest sample size relative to the number of genetic markers presents formidable computational, statistical and methodological challenges for accurately identifying markers/interactions and for building phenotype-predictive models.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-11404819,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-15793588,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-16369572,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-16457852,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17048392,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17082497,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17529973,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17586549,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17721534,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17971837,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-5073852
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Oct
|
pubmed:issn |
1367-4811
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
1
|
pubmed:volume |
25
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
2478-85
|
pubmed:dateRevised |
2011-8-1
|
pubmed:meshHeading |
pubmed-meshheading:19608708-Algorithms,
pubmed-meshheading:19608708-Computational Biology,
pubmed-meshheading:19608708-Entropy,
pubmed-meshheading:19608708-Genetic Predisposition to Disease,
pubmed-meshheading:19608708-Genome,
pubmed-meshheading:19608708-Genome-Wide Association Study,
pubmed-meshheading:19608708-Models, Statistical,
pubmed-meshheading:19608708-Phenotype,
pubmed-meshheading:19608708-Polymorphism, Single Nucleotide
|
pubmed:year |
2009
|
pubmed:articleTitle |
An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions.
|
pubmed:affiliation |
Department of Electrical Engineering, The Pennsylvania State University, USA. djmiller@engr.psu.edu
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|