Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
19
pubmed:dateCreated
2009-9-28
pubmed:abstractText
In both genome-wide association studies (GWAS) and pathway analysis, the modest sample size relative to the number of genetic markers presents formidable computational, statistical and methodological challenges for accurately identifying markers/interactions and for building phenotype-predictive models.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-11404819, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-15793588, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-16369572, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-16457852, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17048392, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17082497, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17529973, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17586549, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17721534, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-17971837, http://linkedlifedata.com/resource/pubmed/commentcorrection/19608708-5073852
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
1367-4811
pubmed:author
pubmed:issnType
Electronic
pubmed:day
1
pubmed:volume
25
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
2478-85
pubmed:dateRevised
2011-8-1
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions.
pubmed:affiliation
Department of Electrical Engineering, The Pennsylvania State University, USA. djmiller@engr.psu.edu
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't