Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2009-12-21
pubmed:abstractText
With the advent of rapid and relatively cheap genotyping technologies there is now the opportunity to attempt to identify gene-environment and gene-gene interactions when the number of genes and environmental factors is potentially large. Unfortunately the dimensionality of the parameter space leads to a computational explosion in the number of possible interactions that may be investigated. The full model that includes all interactions and main effects can be unstable, with wide confidence intervals arising from the large number of estimated parameters. We describe a hierarchical mixture model that allows all interactions to be investigated simultaneously, but assumes the effects come from a mixture prior with two components, one that reflects small null effects and the second for epidemiologically significant effects. Effects from the former are effectively set to zero, hence increasing the power for the detection of real signals. The prior framework is very flexible, which allows substantive information to be incorporated into the analysis. We illustrate the methods first using simulation, and then on data from a case-control study of lung cancer in Central and Eastern Europe.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-11404819, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-11590080, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-12548676, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-1418924, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-14614242, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-15532037, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-15588316, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-15793588, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-1579760, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-16465622, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-16544290, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17186459, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17266115, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17283440, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17429103, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17517688, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17630650, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17654612, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17924838, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-17968988, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-18162478, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-18385738, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-18500343, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-18620558, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-4061442, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-8122051, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-8516590, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-8804145, http://linkedlifedata.com/resource/pubmed/commentcorrection/19492346-9265696
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Jan
pubmed:issn
1098-2272
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
34
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
16-25
pubmed:dateRevised
2011-9-26
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Bayesian mixture modeling of gene-environment and gene-gene interactions.
pubmed:affiliation
International Agency for Research on Cancer, Lyon, France. jonno@u.washington.edu
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural