Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
13
pubmed:dateCreated
2009-8-3
pubmed:databankReference
http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376036, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376037, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376038, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376039, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376040, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376041, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376042, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376043, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376044, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376045, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376046, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376047, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376048, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376049, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376050, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376051, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376052, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376053, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376054, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376055, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376056, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376057, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376058, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376059, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376060, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376061, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376062, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376063, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376064, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376065, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376066, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376067, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376068, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376069, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376070, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376071, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376073, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376074, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ376075, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584284, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584285, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584286, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584287, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584288, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584289, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584290, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584291, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584292, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584293, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584294, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584295, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584296, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584297, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584298, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584299, http://linkedlifedata.com/resource/pubmed/xref/GENBANK/FJ584300
pubmed:abstractText
Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72-94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1742-4658
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
276
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3559-74
pubmed:dateRevised
2010-11-18
pubmed:meshHeading
More...