Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2009-6-2
pubmed:abstractText
Acute hypoxia causes pulmonary vascular leak and is involved in the pathogenesis of pulmonary edema associated with inflammation, acute altitude exposure, and other critical illnesses. Reactive oxygen species, HIF-1, and VEGF have all been implicated in various hypoxic pathologies, yet the ROS-HIF-1-VEGF pathway in pulmonary vascular leak has not been defined. We hypothesized that the ROS-HIF-1-VEGF pathway has an important role in producing hypoxia-induced pulmonary vascular leak. Human pulmonary artery endothelial cell (HPAEC) monolayers were exposed to either normoxia (21% O(2)) or acute hypoxia (3% O(2)) for 24 h and monolayer permeability and H(2)O(2), nuclear HIF-1alpha, and cytosolic VEGF levels were determined. HPAEC were treated with antioxidant cocktail (AO; ascorbate, glutathione, and alpha-tocopherol), HIF-1 siRNA, or the VEGF soluble binding protein fms-like tyrosine kinase-1 (sFlt-1) to delineate the role of the ROS-HIF-1-VEGF pathway in hypoxia-induced HPAEC leak. Additionally, mice exposed to hypobaric hypoxia (18,000 ft, 10% O(2)) were treated with the same antioxidant to determine if in vitro responses corresponded to in vivo hypoxia stress. Hypoxia increased albumin permeativity, H(2)O(2) production, and nuclear HIF-1alpha and cytosolic VEGF concentration. Treatment with an AO lowered the hypoxia-induced HPAEC monolayer permeability as well as the elevation of HIF-1alpha and VEGF. Treatment of hypoxia-induced HPAEC with either an siRNA designed against HIF-1alpha or the VEGF antagonist sFlt-1 decreased monolayer permeability. Mice treated with AO and exposed to hypobaric hypoxia (18,000 ft, 10% O(2)) had less pulmonary vascular leak than those that were untreated. Our data suggest that hypoxia-induced permeability is due, in part, to the ROS-HIF-1alpha-VEGF pathway.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-10199811, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-10749844, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-10956614, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-11252695, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-11604979, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-11686871, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-11749074, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-11884613, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-12374616, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-12488361, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-12538598, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-12682444, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-12766257, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-15110393, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-15464736, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-15475552, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-15649874, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-15703168, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-16106912, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-16782079, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-16968555, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17089888, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17109193, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17568329, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17705790, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17784876, http://linkedlifedata.com/resource/pubmed/commentcorrection/19358884-17998067
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1873-4596
pubmed:author
pubmed:issnType
Electronic
pubmed:day
1
pubmed:volume
47
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
55-61
pubmed:dateRevised
2011-10-13
pubmed:meshHeading
pubmed-meshheading:19358884-Active Transport, Cell Nucleus, pubmed-meshheading:19358884-Animals, pubmed-meshheading:19358884-Anoxia, pubmed-meshheading:19358884-Antioxidants, pubmed-meshheading:19358884-Capillary Permeability, pubmed-meshheading:19358884-Cell Nucleus, pubmed-meshheading:19358884-Cells, Cultured, pubmed-meshheading:19358884-Endothelium, Vascular, pubmed-meshheading:19358884-Hypoxia-Inducible Factor 1, alpha Subunit, pubmed-meshheading:19358884-Male, pubmed-meshheading:19358884-Mice, pubmed-meshheading:19358884-Mice, Inbred C57BL, pubmed-meshheading:19358884-Pulmonary Artery, pubmed-meshheading:19358884-RNA, Small Interfering, pubmed-meshheading:19358884-Reactive Oxygen Species, pubmed-meshheading:19358884-Signal Transduction, pubmed-meshheading:19358884-Transcriptional Activation, pubmed-meshheading:19358884-Vascular Endothelial Growth Factor A
pubmed:year
2009
pubmed:articleTitle
A potential role for reactive oxygen species and the HIF-1alpha-VEGF pathway in hypoxia-induced pulmonary vascular leak.
pubmed:affiliation
University of Colorado Health Science Center, School of Medicine, Denver, CO 80262, USA. David.Irwin@ucdenver.edu
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural