Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2009-12-16
pubmed:abstractText
Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach (National Cancer Institute method) for modeling such food intakes reported on two or more 24-hour recalls (24HRs) and demonstrate its use to estimate the distribution of the food's usual intake in the general population. In this article, we propose an extension of this method to predict individual usual intake of such foods and to evaluate the relationships of usual intakes with health outcomes. Following the regression calibration approach for measurement error correction, individual usual intake is generally predicted as the conditional mean intake given 24HR-reported intake and other covariates in the health model. One feature of the proposed method is that additional covariates potentially related to usual intake may be used to increase the precision of estimates of usual intake and of diet-health outcome associations. Applying the method to data from the Eating at America's Table Study, we quantify the increased precision obtained from including reported frequency of intake on a food frequency questionnaire (FFQ) as a covariate in the calibration model. We then demonstrate the method in evaluating the linear relationship between log blood mercury levels and fish intake in women by using data from the National Health and Nutrition Examination Survey, and show increased precision when including the FFQ information. Finally, we present simulation results evaluating the performance of the proposed method in this context.
pubmed:grant
pubmed:commentsCorrections
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1541-0420
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
65
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1003-10
pubmed:dateRevised
2011-1-26
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes.
pubmed:affiliation
Biometry, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, EPN-3131, Bethesda, Maryland 20892-7354, USA. kipnisv@mail.nih.gov
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural