Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19281832rdf:typepubmed:Citationlld:pubmed
pubmed-article:19281832lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0812281lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C1135918lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0040578lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0078056lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0248868lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0079904lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0596235lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C0205263lld:lifeskim
pubmed-article:19281832lifeskim:mentionsumls-concept:C1879547lld:lifeskim
pubmed-article:19281832pubmed:issue1lld:pubmed
pubmed-article:19281832pubmed:dateCreated2009-5-12lld:pubmed
pubmed-article:19281832pubmed:abstractTextHistone acetylation regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) plays a critical role in the expression of inflammatory genes, such as vascular cell adhesion molecule-1 (VCAM-1). Oxidative processes have been shown to induce VCAM-1 expression. Here, we investigated the mechanisms underlying IL-1beta-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs). Our results showed that IL-1beta enhanced HTSMCs-monocyte adhesion through up-regulation of VCAM-1, which was inhibited by pretreatment with selective inhibitors of PKCalpha (Gö6976), c-Src (PP1), NADPH oxidase [diphenylene iodonium (DPI) and apocynin (APO)], intracellular calcium chelator (BAPTA/AM), PI-PLC (U73122), CaM (calmidazolium chloride), CaM kinase II (KN62), p300 (garcinol), NF-kappaB (Bay11-7082), HDAC (trichostatin A), and ROS scavenger [N-acetyl-L-cysteine (NAC)] or transfection with siRNAs of MyD88, PKCalpha, Src, p47(phox), p300, and HDAC4. Moreover, IL-1beta stimulated NF-kappaB and CaMKII phosphorylation through MyD88-dependent PI-PLC/PKCalpha/c-Src/ROS and PI-PLC/Ca2+/CaM pathways, respectively. Activation of NF-kappaB and CaMKII may eventually lead to the acetylation of histone residues and phosphorylation of histone deacetylases. These findings suggested that IL-1beta induced VCAM-1 expression via these multiple signaling pathways in HTSMCs. Blockade of these pathways may reduce monocyte adhesion via VCAM-1 suppression and attenuation of the inflammatory responses in airway diseases.lld:pubmed
pubmed-article:19281832pubmed:languageenglld:pubmed
pubmed-article:19281832pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:citationSubsetIMlld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19281832pubmed:statusMEDLINElld:pubmed
pubmed-article:19281832pubmed:monthMaylld:pubmed
pubmed-article:19281832pubmed:issn1096-0333lld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:LinChih-Chung...lld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:YangChuen-Mao...lld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:LuoShue-FenSFlld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:ChangChia-Chi...lld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:LeeChiang-Wen...lld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:LinWei-NingWNlld:pubmed
pubmed-article:19281832pubmed:authorpubmed-author:LeeI-TaITlld:pubmed
pubmed-article:19281832pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19281832pubmed:day15lld:pubmed
pubmed-article:19281832pubmed:volume237lld:pubmed
pubmed-article:19281832pubmed:ownerNLMlld:pubmed
pubmed-article:19281832pubmed:authorsCompleteYlld:pubmed
pubmed-article:19281832pubmed:pagination8-21lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:meshHeadingpubmed-meshheading:19281832...lld:pubmed
pubmed-article:19281832pubmed:year2009lld:pubmed
pubmed-article:19281832pubmed:articleTitleActivation of ROS/NF-kappaB and Ca2+/CaM kinase II are necessary for VCAM-1 induction in IL-1beta-treated human tracheal smooth muscle cells.lld:pubmed
pubmed-article:19281832pubmed:affiliationDepartment of Internal Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.lld:pubmed
pubmed-article:19281832pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19281832pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
entrez-gene:2033entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:3553entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:4790entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:5578entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:6714entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:7412entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:4615entrezgene:pubmedpubmed-article:19281832lld:entrezgene
entrez-gene:9759entrezgene:pubmedpubmed-article:19281832lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19281832lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19281832lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19281832lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19281832lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19281832lld:pubmed