pubmed-article:19267229 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:19267229 | lifeskim:mentions | umls-concept:C0205419 | lld:lifeskim |
pubmed-article:19267229 | lifeskim:mentions | umls-concept:C0205263 | lld:lifeskim |
pubmed-article:19267229 | lifeskim:mentions | umls-concept:C1523987 | lld:lifeskim |
pubmed-article:19267229 | pubmed:issue | 1-2 | lld:pubmed |
pubmed-article:19267229 | pubmed:dateCreated | 2009-7-1 | lld:pubmed |
pubmed-article:19267229 | pubmed:abstractText | Death-associated protein kinase 1 (DAPK-1) is a Ca(2+)/CaM-regulated kinase involved in multiple cellular signalling pathways that trigger cell survival, apoptosis, and autophagy. An alternatively spliced product expressed from the dapk1 locus, named s-DAPK-1, does not contain the kinase domain but has part of the DAPK-1 ankyrin-repeat and a novel polypeptide tail extension which is processed proteolytically in vivo. Cleavage of this polypeptide tail from s-DAPK-1 can regulate the ability of the protein to mimic one of the biological functions of DAPK-1 in promoting membrane blebbing. The full-length DAPK-1 protein is a relatively long-lived protein whose half-life is regulated by stress-activated signals from TNFR1 or HSP90 that can promote DAPK-1 protein degradation. Transfection of s-DAPK-1 into cells can also have a direct effect on DAPK-1 protein itself by promoting DAPK-1 de-stabilization. This effect does not require the novel polypeptide tail-extension of s-DAPK-1, as the core ankyrin-repeat containing region of s-DAPK-1 is sufficient to promote DAPK-1 protein de-stabilization. Conversely, the minimal domain on full-length DAPK-1 that responds to the effect of s-DAPK-1 is not the ankyrin-repeat domain but the core kinase domain of DAPK-1. The de-stabilization of DAPK-1 by s-DAPK-1 is not dependent upon the proteasome. However, s-DAPK-1 itself is a very short-lived protein which is regulated by a proteasomal-dependent pathway. Together, these data identify a novel function of s-DAPK-1 in controlling the half-life of DAPK-1 protein itself and indicate that the degradation of each gene product is controlled by two distinct degradation pathways. | lld:pubmed |
pubmed-article:19267229 | pubmed:language | eng | lld:pubmed |
pubmed-article:19267229 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:19267229 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19267229 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:19267229 | pubmed:month | Aug | lld:pubmed |
pubmed-article:19267229 | pubmed:issn | 1573-4919 | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:OrdV AVA | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:HuppTed RTR | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:StevensCraigC | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:HarrisonBenB | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:AminElianaE | lld:pubmed |
pubmed-article:19267229 | pubmed:author | pubmed-author:PathuriSuresh... | lld:pubmed |
pubmed-article:19267229 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:19267229 | pubmed:volume | 328 | lld:pubmed |
pubmed-article:19267229 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:19267229 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:19267229 | pubmed:pagination | 101-7 | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:meshHeading | pubmed-meshheading:19267229... | lld:pubmed |
pubmed-article:19267229 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:19267229 | pubmed:articleTitle | The alternative splice variant of DAPK-1, s-DAPK-1, induces proteasome-independent DAPK-1 destabilization. | lld:pubmed |
pubmed-article:19267229 | pubmed:affiliation | Institute of Genetics and Molecular Medicine, University of Edinburgh, UK. | lld:pubmed |
pubmed-article:19267229 | pubmed:publicationType | Journal Article | lld:pubmed |
entrez-gene:1612 | entrezgene:pubmed | pubmed-article:19267229 | lld:entrezgene |
http://linkedlifedata.com/r... | entrezgene:pubmed | pubmed-article:19267229 | lld:entrezgene |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:19267229 | lld:pubmed |