rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
4
|
pubmed:dateCreated |
2009-3-2
|
pubmed:abstractText |
Cortico-hippocampal interactions during sleep are believed to reorganize neural circuits in support of memory consolidation. However, spike-timing relationships across cortico-hippocampal networks-key determinants of synaptic changes-are poorly understood. Here we show that cells in prefrontal cortex fire consistently within 100 ms after hippocampal cells in naturally sleeping animals. This provides evidence at the single cell-pair level for highly consistent directional interactions between these areas within the window of plasticity. Moreover, these interactions are state dependent: they are driven by hippocampal sharp-wave/ripple (SWR) bursts in slow-wave sleep (SWS) and are sharply reduced during REM sleep. Finally, prefrontal responses are nonlinear: as the strength of hippocampal bursts rises, short-latency prefrontal responses are augmented by increased spindle band activity and a secondary peak approximately 100 ms later. These findings suggest that SWR events are atomic units of hippocampal-prefrontal communication during SWS and that the coupling between these areas is highly attenuated during REM sleep.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-10985280,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-10985283,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-11252767,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-11691983,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-11691984,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-12576550,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-14586019,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-15232109,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-15233760,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-15576887,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-15820700,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-1585183,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-1594723,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-16015622,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-16279838,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-16611848,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17041594,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17145497,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17145507,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17173043,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17360347,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-17905642,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-18400168,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-19249269,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-6866101,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-6866109,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-7260612,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-7619310,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-7624455,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-8036517,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-8351520,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-8622135,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-8670641,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-9030646,
http://linkedlifedata.com/resource/pubmed/commentcorrection/19249278-9856467
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Feb
|
pubmed:issn |
1097-4199
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
26
|
pubmed:volume |
61
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
587-96
|
pubmed:dateRevised |
2011-9-26
|
pubmed:meshHeading |
pubmed-meshheading:19249278-Algorithms,
pubmed-meshheading:19249278-Analysis of Variance,
pubmed-meshheading:19249278-Animals,
pubmed-meshheading:19249278-Electroencephalography,
pubmed-meshheading:19249278-Electrophysiology,
pubmed-meshheading:19249278-Hippocampus,
pubmed-meshheading:19249278-Male,
pubmed-meshheading:19249278-Nerve Net,
pubmed-meshheading:19249278-Prefrontal Cortex,
pubmed-meshheading:19249278-Rats,
pubmed-meshheading:19249278-Rats, Long-Evans,
pubmed-meshheading:19249278-Sleep,
pubmed-meshheading:19249278-Sleep, REM,
pubmed-meshheading:19249278-Sleep Stages
|
pubmed:year |
2009
|
pubmed:articleTitle |
State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep.
|
pubmed:affiliation |
Computation and Neural Systems Program, Division of Biology, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't,
Research Support, N.I.H., Extramural
|