Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2009-2-27
pubmed:abstractText
Intravenous delivery of human adipose-derived stromal cells (hASCs) is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific) may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM) of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p, or CD65. In vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 microm/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-10090394, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-10352295, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-10585960, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-10706723, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-11158961, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-11304456, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-11532516, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-12622935, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-12663481, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-12700586, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-12829442, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-12889478, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-14634125, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-14993122, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15226304, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15235597, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15242864, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15321944, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15489302, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15492584, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15540988, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15694300, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15749936, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-15824038, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-16284171, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-16293605, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-16322640, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17029556, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17271432, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17408504, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17436112, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17584763, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17717539, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-17901400, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18022619, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18228259, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18239152, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18304573, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18362576, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-18574742, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-190200, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-7507411, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-7535583, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-7539452, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-7923637, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-8538793, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-8542539, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-8562500, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-8913627, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-8915191, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-9024700, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-9087616, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-9129046, http://linkedlifedata.com/resource/pubmed/commentcorrection/19247427-9657925
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Feb
pubmed:issn
1553-7358
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
5
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
e1000294
pubmed:dateRevised
2011-6-7
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.
pubmed:affiliation
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't