Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
48
pubmed:dateCreated
2008-12-3
pubmed:abstractText
Time lapse fluorescence imaging has become one of the most important approaches in neurobiological research. In particular, both confocal and two-photon microscopy have been used to study activity-dependent changes in synaptic morphology. However, the diffraction-limited resolution of light microscopy is often inadequate, forcing researchers to complement the live cell imaging strategy by EM. Here, we report on the first use of a far-field optical technique with subdiffraction resolution to noninvasively image activity-dependent morphological plasticity of dendritic spines. Specifically we show that time lapse stimulated emission depletion imaging of dendritic spines of YFP-positive hippocampal neurons in organotypic slices outperforms confocal microscopy in revealing important structural details. The technique substantially improves the quantification of morphological parameters, such as the neck width and the curvature of the heads of spines, which are thought to play critical roles for the function and plasticity of synaptic connections.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-10082466, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-10331391, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-11086982, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-11520928, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-12490942, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-15190253, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-15542587, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-15572107, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-15572108, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-15664179, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-16443657, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-16612384, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-16614170, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-17652605, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-18084500, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-18292304, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-18309046, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-18488034, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-18796604, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-2321027, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-7033675, http://linkedlifedata.com/resource/pubmed/commentcorrection/19028874-8210179
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1091-6490
pubmed:author
pubmed:issnType
Electronic
pubmed:day
2
pubmed:volume
105
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
18982-7
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Live-cell imaging of dendritic spines by STED microscopy.
pubmed:affiliation
Department of Cellular and Systems Neurobiology, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany. naegerl@neuro.mpg.de
pubmed:publicationType
Journal Article