Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2009-2-16
pubmed:abstractText
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-10580504, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-10952359, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-11371619, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12230882, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12471946, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12483226, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12543978, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12882325, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-12933651, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-14698816, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-15699523, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-15879174, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-16123266, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-16195414, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-16204222, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-16682650, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17082459, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17086191, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17201740, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17210671, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17460209, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17571923, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17578509, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17641201, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17662940, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17681037, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17928362, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-17973971, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-18497277, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-7640241, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-8900272, http://linkedlifedata.com/resource/pubmed/commentcorrection/19007875-9060969
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Mar
pubmed:issn
1873-6815
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
44
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
190-200
pubmed:dateRevised
2010-12-3
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Accelerated failure time models provide a useful statistical framework for aging research.
pubmed:affiliation
Departments of Pathology and Geriatrics, University of Michigan, Ann Arbor, MI 48109-2200, USA. wswindel@umich.edu
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Evaluation Studies, Research Support, N.I.H., Extramural