pubmed-article:18974075 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C1519025 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C0205145 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C0030946 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C2698872 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C1511726 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C1441547 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C0376284 | lld:lifeskim |
pubmed-article:18974075 | lifeskim:mentions | umls-concept:C1710236 | lld:lifeskim |
pubmed-article:18974075 | pubmed:issue | 23 | lld:pubmed |
pubmed-article:18974075 | pubmed:dateCreated | 2008-11-25 | lld:pubmed |
pubmed-article:18974075 | pubmed:abstractText | Regulatory proteases modulate proteomic dynamics with a spectrum of specificities against substrate proteins. Predictions of the substrate sites in a proteome for the proteases would facilitate understanding the biological functions of the proteases. High-throughput experiments could generate suitable datasets for machine learning to grasp complex relationships between the substrate sequences and the enzymatic specificities. But the capability in predicting protease substrate sites by integrating the machine learning algorithms with the experimental methodology has yet to be demonstrated. | lld:pubmed |
pubmed-article:18974075 | pubmed:language | eng | lld:pubmed |
pubmed-article:18974075 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18974075 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:18974075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18974075 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18974075 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:18974075 | pubmed:month | Dec | lld:pubmed |
pubmed-article:18974075 | pubmed:issn | 1367-4811 | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:YangAn-SueiAS | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:HsuWen-LianWL | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:HsuHung-JuHJ | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:ChenChing-Tai... | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:SunYi-KunYK | lld:pubmed |
pubmed-article:18974075 | pubmed:author | pubmed-author:YangEi-WenEW | lld:pubmed |
pubmed-article:18974075 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:18974075 | pubmed:day | 1 | lld:pubmed |
pubmed-article:18974075 | pubmed:volume | 24 | lld:pubmed |
pubmed-article:18974075 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:18974075 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:18974075 | pubmed:pagination | 2691-7 | lld:pubmed |
pubmed-article:18974075 | pubmed:dateRevised | 2009-11-4 | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:meshHeading | pubmed-meshheading:18974075... | lld:pubmed |
pubmed-article:18974075 | pubmed:year | 2008 | lld:pubmed |
pubmed-article:18974075 | pubmed:articleTitle | Protease substrate site predictors derived from machine learning on multilevel substrate phage display data. | lld:pubmed |
pubmed-article:18974075 | pubmed:affiliation | Institute of Information Science, Academia Sinica, Taipei 115, Taiwan. | lld:pubmed |
pubmed-article:18974075 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:18974075 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:18974075 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:18974075 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:18974075 | lld:pubmed |