Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
9
pubmed:dateCreated
2009-2-23
pubmed:abstractText
Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-10866208, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-11108481, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-11333967, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-11891111, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-11967538, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-11988575, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-12040175, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-12060727, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-12202830, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-12399590, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-12443515, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-14530388, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-14681407, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-14766974, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-14973197, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15001476, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15190252, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15564042, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15698136, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15721042, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15845847, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-15869393, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-16099987, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-16455753, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-16677373, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-16968132, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-17185604, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-17502601, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-17516560, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-17916244, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-17921997, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-18033796, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-18178648, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-18487186, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-18537452, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-18614015, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-9623998, http://linkedlifedata.com/resource/pubmed/commentcorrection/18940806-9888852
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Feb
pubmed:issn
0021-9258
pubmed:author
pubmed:issnType
Print
pubmed:day
27
pubmed:volume
284
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
5451-5
pubmed:dateRevised
2011-1-21
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Insights into the organization of biochemical regulatory networks using graph theory analyses.
pubmed:affiliation
Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA. avi.maayan@mssm.edu
pubmed:publicationType
Journal Article, Review, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural