Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
25
pubmed:dateCreated
2008-10-7
pubmed:abstractText
There have been articles on comparing methods for global clustering evaluation and cluster detection in disease surveillance, but power and sample size (SS) requirements have not been explored for spatially correlated data in this area. We are developing such requirements for tests of spatial clustering and cluster detection for regional cancer cases. We compared global clustering methods including Moran's I, Tango's and Besag-Newell's R statistics, and cluster detection methods including circular and elliptic spatial scan statistics (SaTScan), flexibly shaped spatial scan statistics, Turnbull's cluster evaluation permutation procedure, local indicators of spatial association, and upper-level set scan statistics. We identified eight geographic patterns that are representative of patterns of mortality due to various types of cancer in the U.S. from 1998 to 2002. We then evaluated the selected spatial methods based on state- and county-level data simulated from these different spatial patterns in terms of geographic locations and relative risks, and varying SSs using the 2000 population in each county. The comparison provides insight into the performance of the spatial methods when applied to varying cancer count data in terms of power and precision of cluster detection.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-10441770, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-10641024, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-10671012, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-10783772, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-12957461, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-1442740, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15198922, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15420245, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15577294, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15690999, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15904524, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-15953394, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-16435334, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-16453372, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-16458789, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-16596297, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-2356805, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-7701154, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-8711272, http://linkedlifedata.com/resource/pubmed/commentcorrection/18712778-8861157
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
0277-6715
pubmed:author
pubmed:copyrightInfo
Copyright 2008 John Wiley & Sons, Ltd.
pubmed:issnType
Print
pubmed:day
10
pubmed:volume
27
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
5111-42
pubmed:dateRevised
2010-9-21
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases.
pubmed:affiliation
SRAB, SRP, DCCPS, National Cancer Institute, Rockville, MD 20852, USA. huangla@mail.nih.gov
pubmed:publicationType
Journal Article