Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2008-10-8
pubmed:abstractText
Decreased cerebral blood flow (CBF) has been observed following the resuscitation from neonatal hypoxic-ischemic injury, but its mechanism is not known. We address the hypothesis that reduced CBF is due to a change in nitric oxide (NO) and superoxide anion O(2)(-) balance secondary to endothelial NO synthase (eNOS) uncoupling with vascular injury. Wistar rats (7 day old) were subjected to cerebral hypoxia-ischemia by unilateral carotid occlusion under isoflurane anesthesia followed by hypoxia with hyperoxic or normoxic resuscitation. Expired CO(2) was determined during the period of hyperoxic or normoxic resuscitation. Laser-Doppler flowmetry was used with isoflurane anesthesia to monitor CBF, and cerebral perivascular NO and O(2)(-) were determined using fluorescent dyes with fluorescence microscopy. The effect of tetrahydrobiopterin supplementation on each of these measurements and the effect of apocynin and N(omega)-nitro-L-arginine methyl ester (L-NAME) administration on NO and O(2)(-) were determined. As a result, CBF in the ischemic cortex declined following the onset of resuscitation with 100% O(2) (hyperoxic resuscitation) but not room air (normoxic resuscitation). Expired CO(2) was decreased at the onset of resuscitation, but recovery was the same in normoxic and hyperoxic resuscitated groups. Perivascular NO-induced fluorescence intensity declined, and O(2)(-)-induced fluorescence increased in the ischemic cortex after hyperoxic resuscitation up to 24 h postischemia. L-NAME treatment reduced O(2)(-) relative to the nonischemic cortex. Apocynin treatment increased NO and reduced O(2)(-) relative to the nonischemic cortex. The administration of tetrahydrobiopterin following the injury increased perivascular NO, reduced perivascular O(2)(-), and increased CBF during hyperoxic resuscitation. These results demonstrate that reduced CBF follows hyperoxic resuscitation but not normoxic resuscitation after neonatal hypoxic-ischemic injury, accompanied by a reduction in perivascular production of NO and an increase in O(2)(-). The finding that tetrahydrobiopterin, apocynin, and L-NAME normalized radical production suggests that the uncoupling of perivascular NOS, probably eNOS, due to acquired relative tetrahydrobiopterin deficiency occurs after neonatal hypoxic-ischemic brain injury. It appears that both NOS uncoupling and the activation of NADPH oxidase participate in the changes of reactive oxygen concentrations seen in cerebral hypoxic-ischemic injury.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-10473266, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-11020659, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-11478918, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-11788333, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-12411665, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-12512689, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-12668586, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-12697739, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-1378626, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-15514203, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-15596110, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-15623539, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-15942166, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-15942460, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16046840, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16143585, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16210431, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16210845, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16257641, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-1635835, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16729278, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16804552, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-16990215, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-17098227, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-1720542, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-18708440, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-2674168, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-7235629, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-7514300, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-7545787, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-7552244, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-7583611, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-8134185, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-8301222, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9128281, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9219860, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9621981, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9666719, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9722151, http://linkedlifedata.com/resource/pubmed/commentcorrection/18676689-9895227
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/5,6,7,8-tetrahydrobiopterin, http://linkedlifedata.com/resource/pubmed/chemical/Acetophenones, http://linkedlifedata.com/resource/pubmed/chemical/Biopterin, http://linkedlifedata.com/resource/pubmed/chemical/Carbon Dioxide, http://linkedlifedata.com/resource/pubmed/chemical/Enzyme Inhibitors, http://linkedlifedata.com/resource/pubmed/chemical/NADPH Oxidase, http://linkedlifedata.com/resource/pubmed/chemical/NG-Nitroarginine Methyl Ester, http://linkedlifedata.com/resource/pubmed/chemical/Nitric Oxide, http://linkedlifedata.com/resource/pubmed/chemical/Nitric Oxide Synthase Type II, http://linkedlifedata.com/resource/pubmed/chemical/Nitric Oxide Synthase Type III, http://linkedlifedata.com/resource/pubmed/chemical/Nos3 protein, rat, http://linkedlifedata.com/resource/pubmed/chemical/Superoxides, http://linkedlifedata.com/resource/pubmed/chemical/acetovanillone
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
0363-6135
pubmed:author
pubmed:issnType
Print
pubmed:volume
295
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
H1809-14
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:18676689-Animals, pubmed-meshheading:18676689-Resuscitation, pubmed-meshheading:18676689-Rats, pubmed-meshheading:18676689-Carbon Dioxide, pubmed-meshheading:18676689-Nitric Oxide, pubmed-meshheading:18676689-Microscopy, Fluorescence, pubmed-meshheading:18676689-Acetophenones, pubmed-meshheading:18676689-Enzyme Inhibitors, pubmed-meshheading:18676689-Cerebrovascular Circulation, pubmed-meshheading:18676689-Cerebral Cortex, pubmed-meshheading:18676689-Time Factors, pubmed-meshheading:18676689-Disease Models, Animal, pubmed-meshheading:18676689-Animals, Newborn, pubmed-meshheading:18676689-Rats, Wistar, pubmed-meshheading:18676689-Endothelium, Vascular, pubmed-meshheading:18676689-Oxygen Inhalation Therapy, pubmed-meshheading:18676689-Exhalation, pubmed-meshheading:18676689-Superoxides, pubmed-meshheading:18676689-Biopterin, pubmed-meshheading:18676689-NADPH Oxidase, pubmed-meshheading:18676689-Laser-Doppler Flowmetry, pubmed-meshheading:18676689-NG-Nitroarginine Methyl Ester, pubmed-meshheading:18676689-Nitric Oxide Synthase Type II
More...