Source:http://linkedlifedata.com/resource/pubmed/id/18664467
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
18
|
pubmed:dateCreated |
2008-9-8
|
pubmed:abstractText |
The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to different classes. The practical inference follows the Bayesian paradigm and samples the network structure, the number of classes and the assignment of latent variables from the posterior distribution with Markov Chain Monte Carlo (MCMC), using the recently proposed allocation sampler as an alternative to RJMCMC.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical | |
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
1367-4811
|
pubmed:author | |
pubmed:issnType |
Electronic
|
pubmed:day |
15
|
pubmed:volume |
24
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
2071-8
|
pubmed:dateRevised |
2009-11-4
|
pubmed:meshHeading |
pubmed-meshheading:18664467-Algorithms,
pubmed-meshheading:18664467-Arabidopsis,
pubmed-meshheading:18664467-Bayes Theorem,
pubmed-meshheading:18664467-Circadian Rhythm,
pubmed-meshheading:18664467-Computer Simulation,
pubmed-meshheading:18664467-Gene Expression Profiling,
pubmed-meshheading:18664467-Gene Regulatory Networks,
pubmed-meshheading:18664467-Macrophages,
pubmed-meshheading:18664467-Models, Genetic,
pubmed-meshheading:18664467-Models, Statistical,
pubmed-meshheading:18664467-Proteome
|
pubmed:year |
2008
|
pubmed:articleTitle |
Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler.
|
pubmed:affiliation |
School of Biological Sciences, The University of Edinburgh, Swann Building, King's Buildings, Edinburgh, UK. marco@bioss.ac.uk
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|