Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
29
pubmed:dateCreated
2008-7-18
pubmed:abstractText
Many microorganisms such as bacteria and fungi possess so-called capsules made of polysaccharides which protect these microorganisms from environmental insults and host immune defenses. The polysaccharide capsule of Cryptococcus neoformans, a human pathogenic yeast, is capable of self-assembly, composed mostly of glucuronoxylomannan (GXM), a polysaccharide with a molecular weight of approximately 2,000,000, and has several layers with different densities. The objective of this study was to model pore-hindered diffusion and binding of the GXM-specific antibody within the C. neoformans capsule. Using the finite-element method (FEM), we created a model which represents the in vivo binding of a GXM-specific antibody to a C. neoformans cell taking into account the intravenous infusion time of antibody, antibody diffusion through capsular pores, and Michaelis-Menten kinetics of antibody binding to capsular GXM. The model predicted rapid diffusion of antibody to all regions of the capsule where the pore size was greater than the Stokes diameter of the antibody. Binding occurred primarily at intermediate regions of the capsule. The GXM concentration in each capsular region was the principal determinant of the steady-state antibody-GXM complex concentration, while the forward binding rate constant influenced the rate of complex formation in each region. The concentration profiles predicted by the model closely matched experimental immunofluorescence data. Inclusion of different antibody isotypes (IgG, IgA, and IgM) into the modeling algorithm resulted in similar complex formation in the outer capsular regions, but different depths of binding at the inner regions. These results have implications for the development of new antibody-based therapies.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-11115750, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-11800266, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-12912884, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-12941400, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-13211998, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-15049807, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-15701808, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-15728888, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-16824038, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-16963294, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17114596, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17437333, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17573547, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17598901, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17601878, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-17885584, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-2420804, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-6388977, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-8161703, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-8168912, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-8238868, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-9521136, http://linkedlifedata.com/resource/pubmed/commentcorrection/18588334-9782178
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1520-6106
pubmed:author
pubmed:issnType
Print
pubmed:day
24
pubmed:volume
112
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
8514-22
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:18588334-Algorithms, pubmed-meshheading:18588334-Antibodies, Fungal, pubmed-meshheading:18588334-Antibodies, Monoclonal, pubmed-meshheading:18588334-Antigen-Antibody Reactions, pubmed-meshheading:18588334-Carbohydrate Sequence, pubmed-meshheading:18588334-Cryptococcus neoformans, pubmed-meshheading:18588334-Finite Element Analysis, pubmed-meshheading:18588334-Humans, pubmed-meshheading:18588334-Immunoglobulin A, pubmed-meshheading:18588334-Immunoglobulin G, pubmed-meshheading:18588334-Immunoglobulin M, pubmed-meshheading:18588334-Kinetics, pubmed-meshheading:18588334-Models, Biological, pubmed-meshheading:18588334-Molecular Sequence Data, pubmed-meshheading:18588334-Molecular Weight, pubmed-meshheading:18588334-Polysaccharides, pubmed-meshheading:18588334-Polysaccharides, Bacterial
pubmed:year
2008
pubmed:articleTitle
Finite-element model of interaction between fungal polysaccharide and monoclonal antibody in the capsule of Cryptococcus neoformans.
pubmed:affiliation
Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural