Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
11
pubmed:dateCreated
2008-6-23
pubmed:abstractText
We have developed statistical models for estimating the failure rate of polymerase chain reaction (PCR) primers using 236 primer sequence-related factors. The model involved 1314 primer pairs and is based on more than 80 000 PCR experiments. We found that the most important factor in determining PCR failure is the number of predicted primer-binding sites in the genomic DNA. We also compared different ways of defining primer-binding sites (fixed length word versus thermodynamic model; exact match versus matches including 1-2 mismatches). We found that the most efficient prediction of PCR failure rates can be achieved using a combination of four factors (number of primer-binding sites counted in different ways plus GC% of the primer) combined into single statistical model GM1. According to our estimations from experimental data, the GM1 model can reduce the average failure rate of PCR primers nearly 3-fold (from 17% to 6%). The GM1 model can easily be implemented in software to premask genome sequences for potentially failing PCR primers, thus improving large-scale PCR-primer design.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-10547847, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-10973072, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-12110843, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-12466563, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-12824337, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-12907751, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-14681465, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-15139820, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-15284101, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-15488375, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-15598831, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-16105896, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-16234322, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-16566824, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-17170002, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-17951788, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-3344216, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-7937094, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-8125324, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-9254694, http://linkedlifedata.com/resource/pubmed/commentcorrection/18492719-9611248
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
1362-4962
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
36
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
e66
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Predicting failure rate of PCR in large genomes.
pubmed:affiliation
Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, Tartu, Estonia.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Evaluation Studies