Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
2008-4-24
pubmed:abstractText
Immobilization of cells inside microfluidic devices is a promising approach for enabling studies related to drug screening and cell biology. Despite extensive studies in using grooved substrates for immobilizing cells inside channels, a systematic study of the effects of various parameters that influence cell docking and retention within grooved substrates has not been performed. We demonstrate using computational simulations that the fluid dynamic environment within microgrooves significantly varies with groove width, generating microcirculation areas in smaller microgrooves. Wall shear stress simulation predicted that shear stresses were in the opposite direction in smaller grooves (25 and 50 microm wide) in comparison to those in wider grooves (75 and 100 microm wide). To validate the simulations, cells were seeded within microfluidic devices, where microgrooves of different widths were aligned perpendicularly to the direction of the flow. Experimental results showed that, as predicted, the inversion of the local direction of shear stress within the smaller grooves resulted in alignment of cells on two opposite sides of the grooves under the same flow conditions. Also, the amplitude of shear stress within microgrooved channels significantly influenced cell retainment in the channels. Therefore, our studies suggest that microscale shear stresses greatly influence cellular docking, immobilization, and retention in fluidic systems and should be considered for the design of cell-based microdevices.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-11429594, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-11447067, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-11701512, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-12038631, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-12088033, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-12117759, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-12446345, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15020132, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15228340, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15362881, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15472725, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15616734, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15652553, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15738683, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15791337, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-15834948, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16131052, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16224789, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16242769, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16286969, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16389082, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16477028, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16627926, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16688575, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16871203, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-16901537, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17056296, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17186633, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17191127, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17216659, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17216661, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17305308, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17330174, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17430102, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17538712, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17538716, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17569643, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-17590149, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-7619384, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-9501201, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-9675174, http://linkedlifedata.com/resource/pubmed/commentcorrection/18432345-9758657
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
May
pubmed:issn
1473-0197
pubmed:author
pubmed:issnType
Print
pubmed:volume
8
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
747-54
pubmed:dateRevised
2011-5-13
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels.
pubmed:affiliation
Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural