Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
14
pubmed:dateCreated
2008-4-3
pubmed:abstractText
Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-10399936, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-10483914, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-10635029, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11488398, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11586110, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11721046, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11867737, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11893022, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-11929981, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-12408842, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-12629662, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-14735117, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-14739465, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-14999065, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-15172496, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-15888645, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-16099032, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-16099038, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-16571744, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-16783372, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-16858391, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-7360259, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-8618960, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-8863191, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-8986744, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-8989657, http://linkedlifedata.com/resource/pubmed/commentcorrection/18385339-9204923
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1529-2401
pubmed:author
pubmed:issnType
Electronic
pubmed:day
2
pubmed:volume
28
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3814-23
pubmed:dateRevised
2011-3-30
pubmed:meshHeading
pubmed-meshheading:18385339-Analysis of Variance, pubmed-meshheading:18385339-Animals, pubmed-meshheading:18385339-Apoptosis, pubmed-meshheading:18385339-Axons, pubmed-meshheading:18385339-Caspase 3, pubmed-meshheading:18385339-Cicatrix, pubmed-meshheading:18385339-Diagnostic Imaging, pubmed-meshheading:18385339-Disease Models, Animal, pubmed-meshheading:18385339-Female, pubmed-meshheading:18385339-Glial Fibrillary Acidic Protein, pubmed-meshheading:18385339-Gliosis, pubmed-meshheading:18385339-Laminin, pubmed-meshheading:18385339-Mice, pubmed-meshheading:18385339-Motor Neurons, pubmed-meshheading:18385339-Nerve Regeneration, pubmed-meshheading:18385339-Neuroglia, pubmed-meshheading:18385339-Peptide Fragments, pubmed-meshheading:18385339-Recovery of Function, pubmed-meshheading:18385339-Spinal Cord Injuries, pubmed-meshheading:18385339-Time Factors
pubmed:year
2008
pubmed:articleTitle
Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.
pubmed:affiliation
Department of Neurology, Northwestern University, Chicago, Illinois 60611, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural