Source:http://linkedlifedata.com/resource/pubmed/id/18284666
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:dateCreated |
2008-4-15
|
pubmed:abstractText |
Kernel-based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel-based Orthogonal Projections to Latent Structures (K-OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel-based methods, K-OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-10618406,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-11120680,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-12716127,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-15231531,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-15649048,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-15732908,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-17129317,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-17577396,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18284666-17813860
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical | |
pubmed:status |
MEDLINE
|
pubmed:issn |
1471-2105
|
pubmed:author | |
pubmed:issnType |
Electronic
|
pubmed:volume |
9
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
106
|
pubmed:dateRevised |
2010-9-22
|
pubmed:meshHeading | |
pubmed:year |
2008
|
pubmed:articleTitle |
K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space.
|
pubmed:affiliation |
Research Group for Chemometrics, Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden. max.bylesjo@chem.umu.se
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|