Source:http://linkedlifedata.com/resource/pubmed/id/18252427
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
1
|
pubmed:dateCreated |
2008-2-6
|
pubmed:abstractText |
We propose a new approach for leave-one-out cross-validation of neural-network classifiers called "cross-validation with active pattern selection" (CV/APS). In CV/APS, the contribution of the training patterns to network learning is estimated and this information is used for active selection of CV patterns. On the tested examples, the computational cost of CV can be drastically reduced with only small or no errors.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:status |
PubMed-not-MEDLINE
|
pubmed:issn |
1045-9227
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
9
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
35-41
|
pubmed:year |
1998
|
pubmed:articleTitle |
Cross-validation with active pattern selection for neural-network classifiers.
|
pubmed:affiliation |
Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, A-1040 Wien, Austria.
|
pubmed:publicationType |
Journal Article
|