Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2008-2-6
pubmed:abstractText
We propose a new approach for leave-one-out cross-validation of neural-network classifiers called "cross-validation with active pattern selection" (CV/APS). In CV/APS, the contribution of the training patterns to network learning is estimated and this information is used for active selection of CV patterns. On the tested examples, the computational cost of CV can be drastically reduced with only small or no errors.
pubmed:language
eng
pubmed:journal
pubmed:status
PubMed-not-MEDLINE
pubmed:issn
1045-9227
pubmed:author
pubmed:issnType
Print
pubmed:volume
9
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
35-41
pubmed:year
1998
pubmed:articleTitle
Cross-validation with active pattern selection for neural-network classifiers.
pubmed:affiliation
Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, A-1040 Wien, Austria.
pubmed:publicationType
Journal Article