Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2008-1-29
pubmed:abstractText
Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.
pubmed:grant
pubmed:commentsCorrections
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Feb
pubmed:issn
1546-1718
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
40
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
249-54
pubmed:meshHeading
pubmed-meshheading:18223651-Alleles, pubmed-meshheading:18223651-Animals, pubmed-meshheading:18223651-Blastocyst, pubmed-meshheading:18223651-Blastomeres, pubmed-meshheading:18223651-Cell Lineage, pubmed-meshheading:18223651-Computer Simulation, pubmed-meshheading:18223651-Crosses, Genetic, pubmed-meshheading:18223651-DNA, Mitochondrial, pubmed-meshheading:18223651-DNA Replication, pubmed-meshheading:18223651-Embryo, Mammalian, pubmed-meshheading:18223651-Embryo Transfer, pubmed-meshheading:18223651-Embryonic Development, pubmed-meshheading:18223651-Female, pubmed-meshheading:18223651-Gene Dosage, pubmed-meshheading:18223651-Gene Frequency, pubmed-meshheading:18223651-Genetic Markers, pubmed-meshheading:18223651-Genotype, pubmed-meshheading:18223651-Green Fluorescent Proteins, pubmed-meshheading:18223651-Mice, pubmed-meshheading:18223651-Mice, Inbred C3H, pubmed-meshheading:18223651-Mice, Inbred C57BL, pubmed-meshheading:18223651-Mice, Inbred CBA, pubmed-meshheading:18223651-Mice, Inbred Strains, pubmed-meshheading:18223651-Mice, Transgenic, pubmed-meshheading:18223651-Microinjections, pubmed-meshheading:18223651-Mitochondria, pubmed-meshheading:18223651-Models, Genetic, pubmed-meshheading:18223651-Oocytes, pubmed-meshheading:18223651-Polymorphism, Genetic, pubmed-meshheading:18223651-Pregnancy, pubmed-meshheading:18223651-Repressor Proteins
pubmed:year
2008
pubmed:articleTitle
A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes.
pubmed:affiliation
Mitochondrial Research Group, Newcastle University, Newcastle NE2 4HH, UK.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't