pubmed:abstractText |
We propose a new approach to identify interacting proteins based on gene expression data. By using hypergeometric distribution and extensive Monte-Carlo simulations, we demonstrate that looking at synchronous expression peaks in a single time interval is a high sensitivity approach to detect co-regulation among interacting proteins. Combining gene expression and Gene Ontology similarity analyses enabled the extraction of novel interactions from microarray datasets. Applying this approach to p21-activated kinase 1, we validated alpha-tubulin and early endosome antigen 1 as its novel interactors.
|