Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
49
pubmed:dateCreated
2007-12-12
pubmed:abstractText
In analyzing and mathematical modeling of complex (bio)chemical reaction networks, formal methods that connect network structure and dynamic behavior are needed because often, quantitative knowledge of the networks is very limited. This applies to many important processes in cell biology. Chemical reaction network theory allows for the classification of the potential network behavior-for instance, with respect to the existence of multiple steady states-but is computationally limited to small systems. Here, we show that by analyzing subnetworks termed elementary flux modes, the applicability of the theory can be extended to more complex networks. For an example network inspired by cell cycle control in budding yeast, the approach allows for model discrimination, identification of key mechanisms for multistationarity, and robustness analysis. The presented methods will be helpful in modeling and analyzing other complex reaction networks.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-11967538, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-12076125, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-12181603, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-12242336, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-12648679, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-12801880, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-15369668, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-15446975, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-15494745, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-16239477, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-16482094, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-16735474, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-17035688, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-2453282, http://linkedlifedata.com/resource/pubmed/commentcorrection/18042723-9841670
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1091-6490
pubmed:author
pubmed:issnType
Electronic
pubmed:day
4
pubmed:volume
104
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
19175-80
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
Subnetwork analysis reveals dynamic features of complex (bio)chemical networks.
pubmed:affiliation
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany. conradi@mpi-magdeburg.mpg.de
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't