rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
4
|
pubmed:dateCreated |
2008-2-11
|
pubmed:abstractText |
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II, the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature, fetal liver-like erythroblasts, that are smaller, express mostly fetal hemoglobin, and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated, and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary, because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-10828043,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-11535826,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-11981559,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-12669646,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-12702499,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-1468546,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-15084470,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-15374881,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-15619619,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-15831705,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-15914555,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-16263786,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-16338487,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-16645170,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-16757688,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-17077320,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-17157159,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-17657354,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-2425983,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-2578614,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-6170071,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-6198659,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-6201856,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-7008862,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-7529873,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-8417345,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-8547678,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-95353,
http://linkedlifedata.com/resource/pubmed/commentcorrection/18024790-9804556
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
AIM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Feb
|
pubmed:issn |
0006-4971
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
15
|
pubmed:volume |
111
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
2400-8
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:18024790-Antigens, CD,
pubmed-meshheading:18024790-Antigens, CD34,
pubmed-meshheading:18024790-Cell Differentiation,
pubmed-meshheading:18024790-Cell Line,
pubmed-meshheading:18024790-Embryonic Stem Cells,
pubmed-meshheading:18024790-Erythrocytes,
pubmed-meshheading:18024790-Fetus,
pubmed-meshheading:18024790-Globins,
pubmed-meshheading:18024790-Hemoglobins,
pubmed-meshheading:18024790-Hemoglobins, Abnormal,
pubmed-meshheading:18024790-Hepatocytes,
pubmed-meshheading:18024790-Humans,
pubmed-meshheading:18024790-Yolk Sac
|
pubmed:year |
2008
|
pubmed:articleTitle |
Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells.
|
pubmed:affiliation |
Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, N.I.H., Extramural
|