Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
11
pubmed:dateCreated
2007-11-2
pubmed:abstractText
Comprehensive identification and cataloging of copy number variations (CNVs) is required to provide a complete view of human genetic variation. The resolution of CNV detection in previous experimental designs has been limited to tens or hundreds of kilobases. Here we present PennCNV, a hidden Markov model (HMM) based approach, for kilobase-resolution detection of CNVs from Illumina high-density SNP genotyping data. This algorithm incorporates multiple sources of information, including total signal intensity and allelic intensity ratio at each SNP marker, the distance between neighboring SNPs, the allele frequency of SNPs, and the pedigree information where available. We applied PennCNV to genotyping data generated for 112 HapMap individuals; on average, we detected approximately 27 CNVs for each individual with a median size of approximately 12 kb. Excluding common rearrangements in lymphoblastoid cell lines, the fraction of CNVs in offspring not detected in parents (CNV-NDPs) was 3.3%. Our results demonstrate the feasibility of whole-genome fine-mapping of CNVs via high-density SNP genotyping.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-11381028, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-11452364, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-11932250, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-1318781, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-14981516, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-15273396, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-15286789, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-15838508, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-15895083, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-15918152, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16327808, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16327809, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16418744, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16468122, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16482228, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16533818, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16809666, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16826518, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16899659, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-16902084, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17115057, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17116639, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17122085, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17122850, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17142222, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17160897, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17225249, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17341461, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17495918, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17597776, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17597779, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17597780, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-17597783, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-8380764, http://linkedlifedata.com/resource/pubmed/commentcorrection/17921354-9216722
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
1088-9051
pubmed:author
pubmed:issnType
Print
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1665-74
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
pubmed:affiliation
Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural