Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
8
|
pubmed:dateCreated |
1992-3-31
|
pubmed:abstractText |
Multivariate methods based on principal components (PCA and PLS) have been used to reduce NMR spectral information, to predict NMR parameters of complicated structures, and to relate shift data sets to dependent descriptors of biological significance. Noise reduction and elimination of instrumental artifacts are easily performed on 2D NMR data. Configurational classification of triterpenes and shift predictions in disubstituted benzenes can be obtained using PCA and PLS analysis. Finally, the shift predictions of tripeptides from descriptors of amino acids open the possibility of automatic analysis of multidimensional data of complex structures.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
0731-7085
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
9
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
655-8
|
pubmed:dateRevised |
2009-11-19
|
pubmed:meshHeading |
pubmed-meshheading:1790185-Amino Acid Sequence,
pubmed-meshheading:1790185-Chemistry Techniques, Analytical,
pubmed-meshheading:1790185-Data Interpretation, Statistical,
pubmed-meshheading:1790185-Magnetic Resonance Spectroscopy,
pubmed-meshheading:1790185-Molecular Sequence Data,
pubmed-meshheading:1790185-Multivariate Analysis,
pubmed-meshheading:1790185-Spectrum Analysis
|
pubmed:year |
1991
|
pubmed:articleTitle |
Multivariate data analysis of NMR data.
|
pubmed:affiliation |
Department of Organic Chemistry, Umeå University, Sweden.
|
pubmed:publicationType |
Journal Article
|